So for this question, we're asked to find the quadrant in which the angle of data lies and were given to conditions were given. Sign of data is less than zero, and we're given that tangent of data is also less than zero. Now I have an acronym to remember which Trig functions air positive in each quadrant. . And in the first quadrant we have that all the trig functions are positive. In the second quadrant, we have that sign and co seeking are positive. And the third quadrant we have tangent and co tangent are positive. And in the final quadrant, Fourth Quadrant we have co sign and seeking are positive. So our first condition says the sign of data is less than zero. Of course, that means it's negative, so it cannot be quadrant one or quadrant two. It can't be those because here in Quadrant one, we have that all the trick functions air positive and the second quadrant we have that sign. If data is a positive, so we're between Squadron three and quadrant four now. The second condition says the tangent of data is also less than zero now in Quadrant three. We have that tangent of data is positive, so it cannot be quadrant three, so our r final answer is quadrant four, where co sign and seek in are positive.
Answer: Ratio of Parts
<u>Step-by-step explanation:</u>

The ratios are equal so the triangles are similar.
Hip Breadths and Aircraft Seats
Engineers want to design seats in commercial aircraft so that they are wide enough to fit 98% of all males. (Accommodating 100% of males would be too expensive.) Men have hip breadths that are normally distributed with a mean of 14.4 in. and a standard deviation of 1.0 in. Find P 98. That is, find the hip breadth for men that separates the smallest 98% from the largest 2%.
Answer:
The given point is a solution to the given system of inequalities.
Step-by-step explanation:
Again, we can substitute the coordinates of the given point into the system of inequalities. We know that the x-coordinate and y-coordinate of
are
and
, respectively.
Plugging these values into the first inequality,
, gives us
, which simplifies to
. This is a true statement, so the given point satisfies the first inequality. We still need to check if it satisfies the second inequality though, because if it doesn't, it won't be a solution to the system.
Plugging the coordinates into the second inequality,
, gives us
, which simplifies to
. This is also a true statement, so the given point satisfies the second inequality as well. Therefore,
is a solution to the given system of inequalities since it satisfies all of the inequalities in the system. Hope this helps!
Answer:
As the number of files increases, the storage space used increases.