Answer: a) 2:1. b) 3. c) Perimeter of ΔEFG=36 Perimeter of ΔHIJ=18. d) 2:1
Step-by-step explanation:
a) Find the ratio of GF and JI. 16:8. Simplify by dividing both by 8 to get 2:1.
b) Set up this equation: 6/16=x/8. Cross-multiply. 6*8=48. Divide by 16. 48/16=3.
c) First find the length of one half of GF by dividing 16 by 2. 16/2=8. Set up the Pythagorean theorem. 8^2+6^2=c^2. Square 8 and 6. 64+36=c^2. Add 64 and 36. 100=c^2. Find the square root of 100. c=10.
EF and EG both measure 10 since they are shown to be congruent. 10+10+16=36.
Next find the length of one half of JI by dividing 8 by 2. 8/2=4. Set up the Pythagorean theorem. Since we know x=3, it will be 4^2+3^2=c^2. Square both 4 and 3. 16+9=c^2. Add 16 and 9. 25=c^2. Find the square root of 25. c=5.
HJ and HI both measure 5 since they are congruent. 5+5+8=18.
d) Find the ratio of the perimeters of ΔEFG and ΔHIJ. 36:18. Simplify by dividing both by 6 to get 6:3. Simplify further by dividing both by 3 to get 2:1.
First multiply 40 and 10 to get 400. Then multiply 400 by 8 to get 3,200.
Your answer would be: 3,200
First we need to determine the type of progression in the question.That's geometric progression. Because the pattern from one sequence to the others are about multiplying.
Second, determine the ratio of the progressionr = a₂/a₁
r = a₂ ÷ a₁
r = 1/2 ÷ 2
r = 1/2 × 1/2
r = 1/4
Third, determine the formula to know the recursive rulea₂ = a × 1/4
a₂ = 1/4 × a
Fourth, determine a₁. a₁ is the first term of the progressiona₁ = 2
Final answer:Recursive rule

a₁ = 2