Answer:
The perimeter is 38 but it gets rounded to 40
Step-by-step explanation:
This is vague. Any dimensions that make a triangle can make more than one, just draw another right next to it. What's really being asked is which dimensions can make more than one non-congruent triangle.
<span>A. Three angles measuring 75°,45°, and 60°.
That's three angles, and 75+45+60 = 180, so it's a legit triangle. The angles don't determine the sides, so we have whole family of similar triangles with these dimensions. TRUE
<span>B. 3 sides measuring 7, 10, 12?
</span>Three sides determine the triangles size and shape uniquely; FALSE
<em>C. Three angles measuring 40</em></span><span><em>°</em></span><em>, 50°</em><span><em>, and 60°? </em>
40+50+60=150, no such triangle exists. FALSE
<em>D. 3 sides measuring 3,4,and 5</em>
Again, three sides uniquely determine a triangle's size and shape; FALSE
</span>
A function

is periodic if there is some constant

such that

for all

in the domain of

. Then

is the "period" of

.
Example:
If

, then we have

, and so

is periodic with period

.
It gets a bit more complicated for a function like yours. We're looking for

such that

Expanding on the left, you have

and

It follows that the following must be satisfied:

The first two equations are satisfied whenever

, or more generally, when

and

(i.e. any multiple of 4).
The second two are satisfied whenever

, and more generally when

with

(any multiple of 10/7).
It then follows that all four equations will be satisfied whenever the two sets above intersect. This happens when

is any common multiple of 4 and 10/7. The least positive one would be 20, which means the period for your function is 20.
Let's verify:


More generally, it can be shown that

is periodic with period

.
Answer:

Step-by-step explanation:
Since interest is compounded semi-annually (half a year or 6 months), in a spawn of 2 years, the interest will have been compounded 4 times. As given in the problem, each time the interest is compounded, the new balance will be 107% or 1.07 times the amount of the old balance.
Therefore, we can set up the following equation to find the new balance after 2 years:
