Answer:
False
Explanation:
As I like to think of it, equilibrium will shift either 'forwards' (to increase products) or 'backwards' (to increase reactants) to oppose any change in system;
If heat is added, the equilibrium will shift in the direction that reduces heat within the system;
In other words, it will shift in favour of the endothermic reaction, i.e. the reaction where heat is gained by the molecules/atoms and therefore taken out from the system;
If the 'forwards' reaction, producing NH₃, is exothermic (i.e. energy is released in the reaction), then the 'backwards' reaction is endothermic;
So the equilibrium will shift in this direction, which is the reaction of 2 NH₃ molecules producing N₂ and 3 H₂
Answer:
B) mostly empty space and has a small, positively charged nucleus
Explanation:
In the gold foil experiment, positively-charged alpha particles were directed towards a gold foil sheet. During the experiment, most of the particles went through the gold foil. However, a select few alpha particles were met with resistance and bounced off the sheet.
This proves that the gold atoms, which made up the gold foil sheet, were mostly empty space as most of the alpha particles passed through it. Furthermore, the particles which bounced off the sheet must have hit small, positively-charged nuclei. The nuclei must have been positive because similar charges repel each other. In other words, if the nuclei were negatively-charged, the positively-charged alpha particles would not bounce off the sheet, but instead "stick" to it.
1.00mol is the correct answer
Covalent bonds form when electrons are shared between two nonmetals.
The correct unabbreviated electron configuration is as below
Vanadium - 1S2 2S2 2P6 3S2 3p6 3d3 4s2
Strontium - 1s2 2S2 2P6 3S2 3P6 3d10 4S2 4P6 4S2
Carbon =1S2 2S2 2P2
<u><em> Explanation</em></u>
vanadium is in atomic number 23 in the periodic table hence its electron configuration is 1s2 2s2 2p6 3s2 3p6 3d3 4s2
Strontium is in atomic number 38 in periodic table hence its electron configuration is 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4s2
Carbon is in atomic number 6 in periodic table therefore its electron configuration is 1s2 2s2 2p2