Answer:
=> 1366.120 g/mL.
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 25 Kg
Volume (v) = 18.3 mL.
From our question, we are to determine the density (rho) of the rock.
The formula:

First let's convert 25 Kg to g;
1 Kg = 1000 g
25 Kg = ?

= 25000 g
Substitute the values into the formula:

= 1366.120 g/mL.
Therefore, the density (rho) of the rock is 1366.120 g/mL.
Q: A
according to this formula, we can get the mole fraction of water (n):
P(solu) = n Pv(water)
when we have Pv(solu) = 22.8 and Pv(water) = 23.8 so by substitution:
22.8 = n * 23.8
n= 0.958
- we need to get the moles of glucose:
moles of water = 500 g(mass weight) / 18 (molar weight)= 27.7 mol
n = moles of water / ( moles of water + moles of glucose)
0.958 = 27.7 / ( 27.7+ moles of glucose)
0.958 moles of glucose + 26.5 = 27.7
0.968 moles of glucose = 1.2
moles of glucose = 1.253 mol
∴ the mass of glucose = no.of glucose moles x molar mass
= 1.253 x 180 = 225.5 g
Q: B
here we also need to get n (mole fraction of water )by using this formula:
Pv(solu) = n Pv(water)
when we have Pv(solu)=132 & Pv(water)=150 so, by substition:
132= n * 150
n = 0.88
so, mole fraction of solution = 1 - 0.88 = 0.12
and we can get after that the moles of water = (mass weight / molar mass)
- no.moles of water = 85 g / 18 g/mol = 4.7 moles
- total moles in solution = moles of water / moles fraction of water
= 4.7 / 0.88 = 5.34 moles
∴ moles of the solution = total moles in solu - moles of water
= 5.34 - 4.7 = 0.64 moles solute
∴ the molar mass of the solute = mass weight of solute / no.of moles of solute
= 53.8 / 0.64 = 84 g/mole
Q: C
moles of urea (NH2)2 CO = mass weight / molar mass
= 4.49 g / 60 g /mol
= 0.07 mol
moles of methanol = mass weight / molar mass
= 39.9 g / 32 g/mol = 1.25 mol
moles fraction of methanol = moles of methanol / (moles of methanol + moles of urea )
moles fraction of methanol = 1.25 / ( 1.25+0.07) = 0.95
by substitution in Pv formula we will be able to get the vapour pressure of the solu :
Pv(solu) = n P°v
Pv(solu) = 0.95 * 89 mm Hg
∴Pv(solu) = 84.55 mmHg
Answer:
The light emitted by a light bulb is a form of radiation that occurs when the filament heats up and its thermal emission gains enough energy to move into the visible spectrum.
Explanation:
Light bulbs contain a filament which is heated up electrically. When this filament is heated up,energy in the form of heat is imparted to the electrons in the filament.
This thermal excitation of electrons ultimately leads to emission of light in the viable spectrum. This light is now radiated through a light bulb.
The balanced chemical reaction is:<span>
</span><span>2C6H6 + 15O2 → 12CO2 + 6H2O</span><span>
We
are given the amount of carbon dioxide to be produced for the reaction. This will
be the starting point of our calculations.
</span>42 g CO2 ( 1 mol CO2 / 44.01 g CO2) ( 2 mol C6H6 / 12 mol CO2 ) (78.1074 g C6H6 / 1 mol C6H6) = 12.42 grams of C6H6