The balanced chemical equation is given as:
2CH3CH2OH(l) → CH3CH2OCH2CH3(l) + H2O(l)
We are given the yield of CH3CH2OCH2CH3 and the amount of ethanol to be used for the reaction. These values will be the starting point for the calculations.
Theoretical amount of product produced:
329 g CH3CH2OH ( 1 mol / 46.07 g ) ( 1 mol CH3CH2OCH2CH3 / 2 mol CH3CH2OH ) (74.12 g / mol ) = 264.66 g CH3CH2OCH2CH3
% yield = .775 = actual yield / 264.66
actual yield = 205.11 g CH3CH2OCH2CH3
Answer:
1.33 atm
Explanation:
use general gas equation P1 V1/ T1 = P2 V2/ T2
rearrange and make P2 the subject then solve,it should give you 1.33 atm
Answer:
NO would form 65.7 g.
H₂O would form 59.13 g.
Explanation:
Given data:
Moles of NH₃ = 2.19
Moles of O₂ = 4.93
Mass of NO produced = ?
Mass of produced H₂O = ?
Solution:
First of all we will write the balance chemical equation,
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will compare the moles of NO and H₂O with ammonia from balanced chemical equation:
NH₃ : NO NH₃ : H₂O
4 : 4 4 : 6
2.19 : 2.19 2.19 : 6/4 × 2.19 = 3.285 mol
Now we will compare the moles of NO and H₂O with oxygen from balanced chemical equation:
O₂ : NO O₂ : H₂O
5 : 4 5 : 6
4.93 : 4/5×4.93 = 3.944 mol 4.93 : 6/5 × 4.93 = 5.916 mol
we can see that moles of water and nitrogen monoxide produced from the ammonia are less, so ammonia will be limiting reactant and will limit the product yield.
Mass of water = number of moles × molar mass
Mass of water = 3.285 mol × 18 g/mol
Mass of water = 59.13 g
Mass of nitrogen monoxide = number of moles × molar mass
Mass of nitrogen monoxide = 2.19 mol × 30 g/mol
Mass of nitrogen monoxide = 65.7 g
Answer:
2Fe + 6HC2H3O2 → 2Fe(C2H3O2)3 + 3H2
Explanation:
There you go
I believe the answer is "Bohr's model explains the chemical behavior of all atoms."