Elevated carbon dioxide mean too much acid in the blood. <span>Increase acid excretion (intercalated cells secrete H+ into tubules) and decrease bicarbonate excretion. They also make new bicarbonate to add to the plasma.</span>
Answer:
2.25g of NaF are needed to prepare the buffer of pH = 3.2
Explanation:
The mixture of a weak acid (HF) with its conjugate base (NaF), produce a buffer. To find the pH of a buffer we must use H-H equation:
pH = pKa + log [A-] / [HA]
<em>Where pH is the pH of the buffer that you want = 3.2, pKa is the pKa of HF = 3.17, and [] could be taken as the moles of A-, the conjugate base (NaF) and the weak acid, HA, (HF). </em>
The moles of HF are:
500mL = 0.500L * (0.100mol/L) = 0.0500 moles HF
Replacing:
3.2 = 3.17 + log [A-] / [0.0500moles]
0.03 = log [A-] / [0.0500moles]
1.017152 = [A-] / [0.0500moles]
[A-] = 0.0500mol * 1.017152
[A-] = 0.0536 moles NaF
The mass could be obtained using the molar mass of NaF (41.99g/mol):
0.0536 moles NaF * (41.99g/mol) =
<h3>2.25g of NaF are needed to prepare the buffer of pH = 3.2</h3>
The balanced form of the chemical equation shown is N₂(g) + 3H₂(g) → 2NH3(g) (option A).
<h3>What is a balanced equation?</h3>
A chemical equation is said to be balanced when the number of atoms of each element on both sides of the equation is the same.
According to this question, the chemical equation between nitrogen and hydrogen is given as follows: N₂(g) + H₂(g) → NH3(g)
The balanced form of the chemical equation shown is N₂(g) + 3H₂(g) → 2NH3(g).
Learn more about balanced equation at: brainly.com/question/7181548
#SPJ1