Answer:The molecular formula of the oxide of metal be
. The balanced equation for the reaction is given by:

Explanation:
Let the molecular formula of the oxide of metal be 

Mass of metal product = 1.68 g
Moles of metal X =
1 mol of metal oxide produces 2 moles of metal X.
Then 0.03005 moles of metal X will be produced by:
of metal oxide
Mass of 0.01502 mol of metal oxide = 2.40 g (given)

y = 2.999 ≈ 3
The molecular formula of the oxide of metal be
. The balanced equation for the reaction is given by:

1.25 g x 22.4 l / 1 mol = 28 g/mol
The reaction is given as
Fe2O3 (s)+ 3CO(g)--->3CO2(g)+ 2Fe(s)
No.of moles=mass in gram/molar mass
As for Fe mole =156.2g/55.847=2.7969~2.797
The ratio b/w CO and Fe is 3:2
Moles of CO needed= 2.797x3/2=4.1955
Mass of CO needed= 4.195mol x 28.01g/mol= 117.515g
Aluminum is a substance because it is a particular type of matter that has particular and unique properties. aluminum is a unique element with a place on the periodic table
Answer:
#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.
Explanation:
Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆
1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.
=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP
2. Calculate moles of F₂ used
=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used
3. Calculate moles of XeF₆ produced from reaction ratios …
Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆
4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number (6.02 x 10²³ molecules/mole)
=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)
= 2.75 x 10²³ molecules XeF₆.