Answer: The correct formula for phosphorous pentachloride is
because a subscript 5 indicates five chlorine (Cl) atoms.
Explanation: For the given molecule, phosphorous pentachloride, there are 2 atoms present which are phosphorous and chlorine atoms.
Number of phosphorous atoms = 1
Number of chlorine atoms = 5
So, the correct formula for phosphorous pentachloride will be
because the subscript 5 represents the 5 chlorine atoms.
3.5 moles of a gas will occupy 2.7 L at 1.5 atm at a temperature of 14.1K
IDEAL GAS LAW:
- The temperature of a gas can be calculated using the ideal gas law equation:
PV = nRT
Where;
- P = pressure (atm)
- V = volume (L)
- n = number of moles (mol)
- R = gas law constant (0.0821 Latm/molK)
- T = temperature (K)
- According to this question, P = 1.5atm, V = 2.7L, n = 3.5moles, T = ?
- 1.5 × 2.7 = 3.5 × 0.0821 × T
- Therefore, 3.5 moles of a gas will occupy 2.7 L at 1.5 atm at a temperature of 14.1K
Learn more at: brainly.com/question/13821925?referrer=searchResults
Google and it will tell you what the 2 examples are
I don't know your options but maybe this bit of information will help, the boiling point of water is 212<span>°</span>F so at that temperature it will likely just start evaporating
Answer:
The false statement is: 3. Because liquid water and liquid carbon tetrachloride do not mix, neither do their vapors
Explanation:
Gas is a state of matter, that has <u>less density than liquids and solids</u>. The gaseous particles have low intermolecular forces and thus they can move freely.
It is a very <u>compressible fluid</u> that has no fixed shape. Gas occupies the whole container in which it is stored, thus taking the shape of the container. Therefore, <u>the volume of the gas is equal to the volume of the container.</u>
<u>Polar liquid like water (H₂O) and nonpolar liquid like carbon tetrachloride, are immiscible. However, in the gaseous state, their vapors form a homogeneous mixture.</u>