1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
13

What is the correct name for Na2CO3

Chemistry
2 answers:
Elan Coil [88]3 years ago
8 0

Answer:

Sodium Carbonate

Explanation:

Also known as washing soda/sodium ash. A inorganic compound. All forms are white, water soluble salts.

KatRina [158]3 years ago
6 0

Answer:

Sodium carbonate

Explanation:

You might be interested in
What is the economic importance of phosphorus in Canada or elsewhere in the world?
vladimir1956 [14]

white phosphorus is used in flares and explosives, so may be important in warfare, etc. Red phosphorus is used in matches (side of matches) and in fertilizers which are essential to growing plants. I don't know if that is economically important, but there are many ways that phosphorus benifit the economy. One downside on the economy is that phosphorus is one of the main ingredients in meth, which of course causes trouble for the economy ( law enforcement, medical, etc. )

6 0
3 years ago
Suppose of nickel(II) chloride is dissolved in of a aqueous solution of potassium carbonate. Calculate the final molarity of chl
stich3 [128]

Answer: Molarity of chloride anion = 0.32 M

<em>Note: the question is missing some values. The full question is given below;</em>

<em>Suppose 7.26 g of nickel(II) chloride is dissolved in 350 mL of a 0.50 M aqueous solution of potassium carbonate. Calculate the final molarity of chloride anion in the solution. You can assume the volume of the solution doesn't change when the nickel(II) chloride is dissolved in it. Be sure your answer has the correct number of significant digits.</em>

Explanation:

Molarity or molar concentration is the number of moles (mol) of component per volume (liters) concentration of solution in mol/L or M

The mass of nickel (II) chloride is 7.26 g.

The volume of potassium carbonate is 350 mL = 0.35 L

The molarity of potassium carbonate solution is 0.50 M

The reaction of nickel (II) chloride and potassium carbonate is given below.

NiCl₂(aq) + KCO₃(aq) --------> KCl(aq) +NiCO₃(s)

The dissociation of nickel (II) chloride is given below.

NiCl₂   -----> Ni²⁺ + 2Cl⁻

The molar mass of nickel (II) chloride is  129.6 g/mol

The moles of nickel (II) chloride can be calculated by the formula given below;

No of moles  = mass(g) / molar mass (g/mol)

No of moles = 7.26 / 129.6 = 0.056 moles

Therefore, molarity of NiCl₂ = 0.056 moles/ 0.35 L = 0.16 M

The molarity of 1 mole nickel (ii) chloride is 0.16 m and according to dissociation of nickel (II) chloride, 1 mole of nickel (II) chloride gives 2 moles of chloride anion.

Therefore, the molarity of chloride anion = 0.16 * 2 = 0.32 M

3 0
3 years ago
S8 + 24 F2 ⟶ 8 SF6
Arturiano [62]

Answer:

Theoretical Yield of SF₆ = 2.01 moles

Explanation: If you understand and can apply the methodology below, you will find it applies to ALL chemical reaction stoichiometry problems based on the balanced standard equation; i.e., balanced to smallest whole number coefficients.

Solution 1:

Rule => Convert given mass values to moles, solve problem using coefficient ratios. Finish by converting moles to the objective dimensions.

Given      S₈            +          24F₂            =>    8SF₆

             425g                    229g                      ?

= 425g/256g/mol.      = 226g/38g/mol.

= 1.66 moles S₈          = 6.03 moles F₂ <= Limiting Reactant

<em>Determining Limiting Reactant => Divide moles each reactant by their respective coefficient; the smaller value will always be the limiting reactant. </em>

S₈ = 1.66/1 = 1.66

F₂ = 6.03/24 = 0.25 => F₂ is the limiting reactant

<em>Determining Theoretical Yield:</em>

Note: When working problem do not use the division ratio results for determining limiting reactant. Use the moles F₂ calculated from 229 grams F₂ => 6.03 moles F₂. The division procedure to define the smaller value and limiting reactant is just a quick way to find which reactant controls the extent of reaction.  

Given      S₈            +          24F₂            =>    8SF₆

             425g                    229g                      ?

   = 425g/256g/mol. = 226g/38g/mol.

= 1.66 moles S₈          = 6.03 moles F₂ <= Limiting Reactant

<em>Max #moles SF₆ produced from 6.03 moles F₂ and an excess S₈ </em>

Since coefficient values represent moles, the reaction ratio for the above reaction is 24 moles F₂ to 8 moles SF₆. Such implies that the moles of SF₆ (theoretical) calculated from 6.03 moles of F₂ must be a number less than the 6.03 moles F₂ given. This can be calculated by using a ratio of equation coefficients between 24F₂ and 8SF₆  to make the outcome smaller than 6.03. That is,

moles SF₆ = 8/24 x 6.03 moles = 2.01 moles SF₆ (=> theoretical yield)  

S₈ + 24F₂ => 8SF₆

moles SF₆ = 8/24(6.03) moles = 2.01 moles

You would NOT want to use 24/8(6.03) = 18.1 moles which is a value >> 6.03.        

This analysis works for all reaction stoichiometry problems.

Convert to moles => divide by coefficients for LR => solve by mole mole ratios from balanced reaction and moles of given.    

____________________

Here's another example just for grins ...

             C₂H₆O   +   3O₂     =>     2CO₂    + 3H₂O

Given:    253g          307g               ?               ?

a. Determine Limiting Reactant

b. Determine mass in grams of CO₂ & H₂O produced        

Limiting Reactant

moles  C₂H₆O = 253g/46g/mol = 5.5 moles  => 5.5/1 = 5.5

moles  O₂ = 307g/32g/mol = 9.6 moles         =><em>  9.6/24 = 0.4 ∴ O₂ is L.R.</em>

But the problem is worked using the mole values; NOT the number results used to ID the limiting reactant.  

 C₂H₆O   +       3O₂          =>     2CO₂    + 3H₂O

------------ 9.6 mole (L.R.)              ?               ?

mole yield CO₂ = 2/3(9.6)mole = 6.4 mole  (CO₂ coefficient < O₂ coefficient)

mole yield H₂O = 9.6mole  = 9.6mole (coefficients O₂ & CO₂ are same.)

mole used C₂H₆O = 1/3(9.6)mole = 3.2 mole (coefficient  C₂H₆O < coefficient O₂)

For grams => moles x formula weight (g/mole)

7 0
3 years ago
c) A substance has a high melting point and conducts electricity. What type of structure does it have
trapecia [35]

Answer:

Metallic structure

Explanation:

They have a high melting point due to the strong forces of attraction between the positive ions (cations) and the delocalised electrons. Moreover, they conduct electricity due to the sea of delocalised electrons.

<em>[Extra: It could be an ionic compound since they also have a high melting point, however they only conduct electricity in liquid or aqeouus state.]</em>

6 0
2 years ago
Many industrial reactions, like the reaction of nitrogen gas (N2) and hydrogen gas (H2) to produce ammonia for fertilizers, have
Jobisdone [24]
Catalysts always quicken the experiment
8 0
3 years ago
Other questions:
  • The average kinetic energy of the atoms that make up a substance which is changing from a liquid to a solid is _____________.dec
    8·1 answer
  • What is the percent composition of the u.s quarter, which has the mass of 5.670g
    11·1 answer
  • I NEED HELP PLSS ASAP!!
    9·1 answer
  • Chemistry Question! Please help ASAP!! <br> Would really appreciate!
    11·1 answer
  • Glucose is a carbohydrate that contains carbon hydrogen and oxygen. The empirical formula of glucose is CH2O and it’s molar mass
    9·1 answer
  • PLEASE HELP ME! VERY IMPORTANT<br> SEE ATTACHED
    12·1 answer
  • Write an importance of endothermic reactions​
    7·1 answer
  • Which statement best describes the graph of the relationship between the volume and temperature of an enclosed gas?
    5·2 answers
  • How many grams are there in 11.8 moles of sodium hydroxide
    11·2 answers
  • Helppppp!!!!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!