<h3>
Answer:</h3>
#1. Balanced equation: 2C₅H₅ + Fe → Fe(C₅H₅)₂
#2. Type of reaction: Synthesis reaction
<h3>
Explanation:</h3>
- Balanced equations are equations that obey the law of conservation of mass.
- When an equation is balanced the number of atoms of each element is equal on both side of the equation.
- Equations are balanced by putting appropriate coefficients on the reactants and products.
- In our case, we are going to put coefficients 2, 1 and 1.
- Thus, the balanced equation will be;
2C₅H₅ + Fe → Fe(C₅H₅)₂
- This type of a reaction is known as synthesis reaction, in which two or more reactants or compounds combine to form a single compound or product.
30 m/hrs (add me on discord if u have it Sipstic++#1460 )
II. sulfur (S) and carbon (C)
and
III. fluorine (F) and oxygen (O)
will form covalent bonds, so the answer will be:
e. II and III
Explanation:
To know is what type of bond is formed between atoms we need to look at the electronegativity difference between the atoms.
If the electronegativity difference is less than 0.4 there is a nonpolar covalent bond.
If the electronegativity difference is between 0.4 and 1.8 there is a polar covalent bond. (if is a metal involved we consider the bond to be ionic)
If the electronegativity difference is greater then 1.8 there is an ionic bond.
We have the following cases:
I. lithium (Li) and sulfur (S)
electronegativity difference = 2.5 (S) - 1 (Li) = 1.5 but because there is a metal involved the bond will be ionic
II. sulfur (S) and carbon (C)
electronegativity difference = 2.5 (S) - 2.5 (C) = 0 so the bond will be nonpolar covalent
III. fluorine (F) and oxygen (O)
electronegativity difference = 4 (F) - 3.5 (O) = 0.5 so the bond will be polar covalent bond.
Learn more about:
covalent and ionic bonds
brainly.com/question/1802971
#learnwithBrainly
Answer:
Covalent solids, also called network solids, are solids that are held together by covalent bonds. As such, they need localized electrons (shared between the atoms) and therefore the atoms are arranged in fixed geometries. Distortion far from this geometry can only occur through a breaking of covalent sigma bonds.
Answer:
trigonal planar
Explanation:
Tri=three, three-dimensional arrangement of the atoms that constitute a molecule.