Condensation is when water vapour becomes liquid. Therefore, it would be e
Equation
CaCO3 ===> CaO + O2
Solution
If you start with this equation, then the balance numbers (molar ratios) are
- 1 for the CaCO3
- 1 for the CaO
- 1 for the O2
If you want 2.35 moles of CaO then you are going to have to start out with 2.35 moles of CaCO3
Answer:
(a) Cu²⁺ +2e⁻ ⇌ Cu
(c) 0.07 V
Explanation:
(a) Cu half-reaction
Cu²⁺ + 2e⁻ ⇌ Cu
(c) Cell voltage
The standard reduction potentials for the half-reactions are+
<u> E°/V
</u>
Cu²⁺ + 2e⁻ ⇌ Cu; 0.34
Hg₂Cl₂ + 2e⁻ ⇌ 2Hg + 2Cl⁻; 0.241
The equation for the cell reaction is
E°/V
Cu²⁺(0.1 mol·L⁻¹) + 2e⁻ ⇌ Cu; 0.34
<u>2Hg + 2Cl⁻ ⇌ Hg₂Cl₂ + 2e⁻; </u> <u>-0.241
</u>
Cu²⁺(0.1 mol·L⁻¹) + 2Hg + 2Cl⁻ ⇌ Cu + Hg₂Cl₂; 0.10
The concentration is not 1 mol·L⁻¹, so we must use the Nernst equation
(ii) Calculations:
T = 25 + 273.15 = 298.15 K
![Q = \dfrac{\text{[Cl}^{-}]^{2}}{ \text{[Cu}^{2+}]} = \dfrac{1}{0.1} = 10\\\\E = 0.10 - \left (\dfrac{8.314 \times 298.15 }{2 \times 96485}\right ) \ln(10)\\\\=0.010 -0.01285 \times 2.3 = 0.10 - 0.03 = \textbf{0.07 V}\\\text{The cell potential is }\large\boxed{\textbf{0.07 V}}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BCl%7D%5E%7B-%7D%5D%5E%7B2%7D%7D%7B%20%5Ctext%7B%5BCu%7D%5E%7B2%2B%7D%5D%7D%20%3D%20%5Cdfrac%7B1%7D%7B0.1%7D%20%3D%2010%5C%5C%5C%5CE%20%3D%200.10%20-%20%5Cleft%20%28%5Cdfrac%7B8.314%20%5Ctimes%20298.15%20%7D%7B2%20%5Ctimes%2096485%7D%5Cright%20%29%20%5Cln%2810%29%5C%5C%5C%5C%3D0.010%20-0.01285%20%5Ctimes%202.3%20%3D%200.10%20-%200.03%20%3D%20%5Ctextbf%7B0.07%20V%7D%5C%5C%5Ctext%7BThe%20cell%20potential%20is%20%7D%5Clarge%5Cboxed%7B%5Ctextbf%7B0.07%20V%7D%7D)
Answer:
Flourine
Explanation:
Its at the 17 group number which are where the halogens are located.
Answer:
The mass of 1.26 mole of water, H₂O, is 22.68 grams
Explanation:
Molar mass is the amount of mass that a substance contains in one mole. In other words, the molar mass of an atom or a molecule is the mass of one mole of that particle and its unit is g/mole.
In this case, being:
the molar mass of water H₂O is:
H₂O= 2*1 g/mole + 16 g/mole= 18 g/mole
Then you can apply the following rule of three: if 18 grams are present in 1 mole of H2O, how much mass is present in 1.26 moles of water?

mass= 22.68 grams
<u><em>The mass of 1.26 mole of water, H₂O, is 22.68 grams</em></u>