Jupiter. It states that the stronger the magnetic field, the larger the magnetosphere. Some 20,000 times stronger than Earth's magnetic field, Jupiter's magnetic field creates a magnetosphere so large it begins to avert the solar wind almost 3 million kilometers before it reaches Jupiter.
Answer:
The mass of unknown object is 8.62Kg
Explanation:
To develop this problem it is necessary to apply the equations related to the Drag force and the Force of Gravity.
For the given point, that is, the moment at which the terminal velocity is reached, the two forces equalize, that is,

By definition we know that the Drag force is defined as

Where,
Drag coefficient
Density
A =Cross-sectional Area
V = Velocity
In the other hand we have,

Where,
Mass of sphere
Mass of unknown object
Equating the two equations we have to

Re-arrange for m_2,

Our values are given by,






Replacing in the equation we have,


<em>Therefore the mass of unknown object is 8.62Kg</em>
Answer:
Dirty bomb
Explanation:
Among the nuclear bomb One type is a "dirty bomb." It combines a conventional explosive such as the dynamite with radioactive material which can spread when the system explodes. The explosion is releasing "dirty" bits of radioactive particles which are extremely harmful and can cause loss equivalent to a nuclear attack.
an ore is a naturally occurring solid material from which a metal or valuable mineral can be profitably extracted.
<h2>
Answer: False</h2>
Explanation:
This sentence is the description of the mechanical energy.
In this sense, the mechanical energy of a body or a system is that which is obtained from the speed of its movement (kinetic energy) or its specific position (potential energy), in order to produce a mechanical work.
That is to say: The mechanical energy involves both the kinetic energy and the potential energy (which can be elastic or gravitational, for example).
In addition, it should be noted that mechanical energy is<u> conserved in conservative fields and is a scalar magnitude.</u>
Therefore:
<h2>The sum of potential and kinetic energies in the particles of a substance is called <u>Mechanical Energy</u></h2>