Answer:
(a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Explanation:
Given that,
Angular velocity = 110 rev/m
Radius = 4.50 m
(a). We need to calculate the average speed
Using formula of average speed



(b). The average velocity over one revolution is zero because the net displacement is zero in one revolution.
Hence, (a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Consider velocity to the right as positive.
First mass:
m₁ = 4.0 kg
v₁ = 2.0 m/s to the right
Second mass:
m₂ = 8.0 kg
v₂ = -3.0 m/s to the left
Total momentum of the system is
P = m₁v₁ + m₂v₂
= 4*2 + 8*(-3)
= -16 (kg-m)/s
Let v (m/s) be the velocity of the center of mass of the 2-block system.
Because momentum of the system is preserved, therefore
(m₁+m₂)v= -16
(4+8 kg)*(v m/s) = -16 (kg-m)/s
v = -1.333 m/s
Answer:
The center of mass is moving at 1.33 m/s to the left.
Answer:
B
Explanation:
it's converts electrical energy to mechanical energy.
Hello!
a) Assuming this is asking for the minimum speed for the rock to make the full circle, we must find the minimum speed necessary for the rock to continue moving in a circular path when it's at the top of the circle.
At the top of the circle, we have:
- Force of gravity (downward)
*Although the rock is still connected to the string, if the rock is swinging at the minimum speed required, there will be no tension in the string.
Therefore, only the force of gravity produces the net centripetal force:

We can simplify and rearrange the equation to solve for 'v'.

Plugging in values:

b)
Let's do a summation of forces at the bottom of the swing. We have:
- Force due to gravity (downward, -)
- Tension force (upward, +)
The sum of these forces produces a centripetal force, upward (+).

Rearranging for 'T":

Plugging in the appropriate values:
