Since you already gave us the weight of the 2.5-kg box,
we don't even need to know what the distance is, just
as long as it doesn't change.
Look at the formula for the gravitational force:
F = G m₁ m₂ / R² .
If 'G', 'm₁' (mass of the Earth), and 'R' (distance from the Earth's center)
don't change, then the Force is proportional to m₂ ... mass of the box,
and you can write a simple proportion:
(6.1 N) / (2.5 kg) = (F) / (1 kg)
Cross-multiply: (6.1 N) (1 kg) = (F) (2.5 kg)
Divide each side by (2.5 kg): F = (6.1N) x (1 kg) / (2.5 kg) = 2.44 N .
The cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
<h3>
Acceleration of the cart</h3>
The acceleration of the cart is determined from the net force acting on the mass-cart system.
Upward force = Downward force
ma = mg
13a = 10(9.8)
13a = 98
a = 98/13
a = 7.54 m/s²
Thus, the cart's acceleration to the right after the mass is released is determined as 7.54 m/s².
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1
Potential energy is highest at the top of the loop, and kinetic energy is highest at the bottom of the loop.
Long straight distance that a person can swim is 5.64 m.
<h3>What is the
Long straight distance?</h3>
The line that runs form one end of the circle to another is called the diameter of the circle. The pool is a circle according to the question and the long straight distance that a person can swim is the same of the diameter of the circular pool.
Now we have;
A = πr^2
A = area of pool
r = radius of pool
r = √A/ π
r = √25/3.142
r = 2.82m
Diameter of the circular pool = 2 r = 2 (2.82 cm) = 5.64 m
Learn more about circle: brainly.com/question/11833983
#SPJ1
Missing parts;
An ad for an above-ground pool states that it is 25 m2. From the ad, you can tell that the pool is a circle. If you swim from one point at the edge of the pool to another, along a straight line, what is the longest distance d you can swim? Express your answer in three significant figures.