1e+60
Is the answer because it just becomes another problom as you do the math
Answer:
i know the smallest prime factor of 12 is 2
Step-by-step explanation:
step by step im sorry i not smart
First of all, I'm going to assume that we have a concave down parabola, because the stream of water is subjected to gravity.
If we need the vertex to be at
, the equation will contain a
term.
If we start with
we have a parabola, concave down, with vertex at
and a maximum of 0.
So, if we add 7, we will translate the function vertically up 7 units, so that the new maximum will be 
We have

Now we only have to fix the fact that this parabola doesn't land at
, because our parabola is too "narrow". We can work on that by multiplying the squared parenthesis by a certain coefficient: we want

such that:
Plugging these values gets us

As you can see in the attached figure, the parabola we get satisfies all the requests.
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Answer:
45 degrees
Step-by-step explanation:
Ok I think it is 45 degrees try that if not super sorry