Help!!differentiate
0" id="TexFormula1" title=" { {e}^{x} }^{2} log_{10}(2x) " alt=" { {e}^{x} }^{2} log_{10}(2x) " align="absmiddle" class="latex-formula">
1 answer:
Rewrite the function using the change-of-base identity as

Apply the product rule:

Use the chain rule:

Compute the remaining derivatives:

If you like, you can convert back to base-10 logarithms:
ln(2<em>x</em>) / ln(10) = log₁₀(2<em>x</em>)
1 / ln(10) = ln(<em>e</em>) / ln(10) = log₁₀(<em>e</em>)
Then

You might be interested in
100-99=1+98=99-97=2+96=98-95=3
2-1=1
An = a1 * r^(n-1)
-405 = -5*3^(n-1)
3^(n-1) = 81
3^4 = 81 so n-1 = 3 and n = 4
Sn = S4 = -5 (1 - 3^4) / ( 1 - 3) = 400 / -2 = -200 Answer
F(-1) = -11
f(0) = -9
f(3) = -3
Answer:
46in
Step-by-step explanation:
brainiest is appreciated