El área de un cuadrado es igual a 8 veces la medida de su lado. ¿Cuánto mide por lado el cuadrado ?
El Area de un Cuadrado es : A = L²
L² = 8 x L -------------> L² / L = 8 ----------> L = 8
Cada lado mide 8 unidades.
2) El triple del área de un cuadrado menos seis veces la medida de su lado es igual a cero ¿Cuánto mide por lado el cuadrado?
El Area de un Cuadrado es : A = L²
(3 x L²) - 6 L = 0
Factorizando : 3L ( L - 2 ) = 0 --------> L = 0 ; L = 2
Cada lado mide 2 unidades.
Answer:
Step-by-step explanation:
The equation of a straight line can be represented in the slope-intercept form, y = mx + c
Where
m = slope
c = intercept
The equation of the given line is
y = 47x - 3
Comparing with the slope intercept equation, m = 47
If two lines are parallel, it means that they have equal slope. This means that the slope of the line passing through (14, 4) is 47
We would determine the intercept, c by substituting m= 47, x = 14 and y = 4 into y = mx + c. It becomes
4 = 47× 14 + c
4 = 658 + c
c = 4 - 658 = - 654
The equation becomes
y = 47x - 654
Answer:
Hence, the perimeter of the triangles are:
P=123.2727 dm
P'=102.7272 dm
Step-by-step explanation:
In two similar triangles:
The ratio of the areas of two triangle is equal to the square of their perimeters.
Let A and A' represents the area of two triangles and P and P' represents their perimeter.
Then they are related as:

We are given:
A=72 dm^2 , A'=50 dm^2
and P+P'=226 dm.-----------(1)
i.e. 
on taking square root on both the side we get:

Now putting the value of P in equation (1) we obtain:

Hence,
P=226-102.7272=123.2727
Hence, the perimeter of the triangles are:
P=123.2727 dm
P'=102.7272 dm