To learn math reading writing and pe.
Answer:
FIGURE 1:
x = 118; y = 96
FIGURE 2:
x = 85; y = 65
Step-by-step explanation:
FIGURE 1:
You know that x = 118 because of the Corresponding Angles theorem.
Because of the Exterior Angle Theorem (triangles), you can then figure out what y is with the following equation: y + 22 = 118 to get y = 96.
FIGURE 2:
In this figure, you first need to determine what the third angle in the bottom right triangle is. Using the Triangle Sum Theorem, you would find that the third angle is 70.
Because of the Vertical Angles Theorem, you know that the third angle in the top left triangle is also 70. With this information, you can now solve for x using the Triangle Sum Theorem to get x = 85.
Now that you know x, you can solve for y. The other 3 angles in the quadrilateral in which y is a part of are 90, 110, and 95. These could be figured out using the Linear Pair Postulate, the Vertical Angles Theorem, and the Linear Pair Postulate respectively. Now you can figure out y by using the Quadrilateral Sum Conjecture to get y = 65.
Answer:
Obviously!! positive is your answer. thanks!!
Answer:
D. Pythagorean
Step-by-step explanation:
Given the identity
cos²x - sin²x = 2 cos²x - 1.
To show that the identity is true, we need to show that the left hand side is equal to right hand side or vice versa.
Starting from the left hand side
cos²x - sin²x ... 1
According to Pythagoras theorem, we know that x²+y² = r² in a right angled triangle. Coverting this to polar form, we have:
x = rcostheta
y = rsintheta
Substituting into the Pythagoras firnuka we have
(rcostheta)²+(rsintheta)² = r²
r²cos²theta+r²sin²theta = r²
r²(cos²theta+sin²theta) = r²
(cos²theta+sin²theta) = 1
sin²theta = 1 - cos²theta
sin²x = 1-cos²x ... 2
Substituting equation 2 into 1 we have;
= cos²x-(1-cos²x)
= cos²x-1+cos²x
= 2cos²x-1 (RHS)
This shows that cos²x -sin²x = 2cos²x-1 with the aid of PYTHAGORAS THEOREM