To get a fraction as a decimal, you have to divide the numerator by the denominator (commonly on a calculator, which is the easiest).
In this case, divide 20 by 100 to get the answer of 0.2.
So, 20/100 as a decimal is 0.2.
Answer: The swimmer dives into the water 5 seconds after the timer is started.
The swimmer comes back up 11 seconds after the timer is started.
Step-by-step explanation:
Answer:
1. last choice
2. first choice
Step-by-step explanation:
<h3><u>First</u><u> </u><u>Image</u></h3>
The reason why it is the last choice because when times keep going as distance also keeps increasing as well. But the last choice says that run at the end of track then turn around and run back. That means there must be a decreasing distance and a maximum value as well.
Therefore the only with max point/vertex is the absolute value which matches the last choice.
<h3><u>Second</u><u> </u><u>Image</u></h3>
First choice because the car straight forwards without any change. The car runs with a steady speed but the distance will keep changing without any change of distance.
So the answer is first choice.
Answer:
- 4x² - 13x + 8 = 0
- 4x² - 11x + 5 = 0
- 16x² - 41x + 1 = 0
- x² + 5x + 4 = 0
- x² - 66x + 64 = 0
Step-by-step explanation:
<u>Given</u>
- α and β are roots of 4x²-5x-1=0
<u>Then the sum and product of the roots are:</u>
- α+b = -(-5)/4 = 5/4
- αβ = -1/4
(i) <u>Roots are α + 1 and β + 1, then we have:</u>
- (x - (α + 1))(x - (β + 1)) = 0
- (x - α - 1)(x - β - 1) = 0
- x² - (α+β+2)x + α+β+ αβ + 1 = 0
- x² - (5/4+2)x +5/4 - 1/4 + 1 = 0
- x² - 13/4x + 2= 0
- 4x² - 13x + 8 = 0
(ii) <u>Roots are 2 - α and 2 - β, then we have:</u>
- (x + α - 2)(x + β - 2) = 0
- x² + (a + β - 4)x - 2(α + β) + αβ + 4 = 0
- x² + (5/4 - 4)x - 2(5/4) - 1/4 + 4 = 0
- x² - 11/4x - 10/4 - 1/4 + 16/4 = 0
- x² - 11/4x + 5/4x = 0
- 4x² - 11x + 5 = 0
(iii) <u>Roots are α² and β², then:</u>
- (x - α²)(x-β²) = 0
- x² -(α²+β²)x + (αβ)² = 0
- x² - ((α+β)² - 2αβ)x + (-1/4)² = 0
- x² - ((5/4)² -2(-1/4))x + 1/16 = 0
- x² - ( 25/16 + 1/2)x + 1/16 = 0
- x² - 33/16x + 1/16 = 0
- 16x² - 33x + 1 = 0
(iv) <u>Roots are 1/α and 1/β, then:</u>
- (x - 1/α)(x - 1/β) = 0
- x² - (1/α+1/β)x + 1/αβ = 0
- x² - ((α+β)/αβ)x + 1/αβ = 0
- x² - (5/4)/(-1/4)x - 1/(-1/4) = 0
- x² + 5x + 4 = 0
(v) <u>Roots are 2/α² and 2/β², then:</u>
- (x - 2/α²)(x - 2/β²) = 0
- x² - (2/α² + 2/β²)x + 4/(αβ)² = 0
- x² - 2((α+β)² - 2αβ)/(αβ)²)x + 4/(αβ)² = 0
- x² - 2((5/4)² - 2(-1/4))/(-1/4)²x + 4/(-1/4)² = 0
- x² - 2(25/16 + 8/16)/(1/16)x + 4(16) = 0
- x² - 2(33)x + 64 = 0
- x² - 66x + 64 = 0
Step-by-step explanation:
log(x+2)-log(x-1)=log2
log(x+2)/(x-1)=log2
=> (x+2)=2(x-1)
=>x+2 =2x-2
=> x=4