Answer:
12
Step-by-step explanation:
Sadly, after giving all the necessary data, you forgot to ask the question.
Here are some general considerations that jump out when we play with
that data:
<em>For the first object:</em>
The object's weight is (mass) x (gravity) = 2 x 9.8 = 19.6 newtons
The force needed to lift it at a steady speed is 19.6 newtons.
The potential energy it gains every time it rises 1 meter is 19.6 joules.
If it's rising at 2 meters per second, then it's gaining 39.2 joules of
potential energy per second.
The machine that's lifting it is providing 39.2 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(2)(4) = 4 joules.
<em>For the second object:</em>
The object's weight is (mass) x (gravity) = 4 x 9.8 = 39.2 newtons
The force needed to lift it at a steady speed is 39.2 newtons.
The potential energy it gains every time it rises 1 meter is 39.2 joules.
If it's rising at 3 meters per second, then it's gaining 117.6 joules of
potential energy per second.
The machine that's lifting it is providing 117.6 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(4)(9) = 18 joules.
If you go back and find out what the question is, there's a good chance that
you might find the answer here, or something that can lead you to it.
Since we have two possible pieces of information and 2 items to solve for, we know this is a system of equations.
Our first piece of information is that our shorter leg (s) is 2 feet shorter than our longer leg (l). This can be written as s=l-2.
Our second piece of information is that using the Pythagorean theorem that our shorter leg squared plus our longer leg squared is equal to our hypotenuse squared. This can be represented by s^2+l^2=10^2. Now we can solve.
We have already isolated for s in our first equation, so we can substitute l-2 in.
(l-2)^2+l^2=10^2
l-2+l=10
2l-2=10
2l=12
l=6
Now we can substitute in for s in our simpler equation
s=6-2
s=4
We now know that using our knowledge of systems of equations, the side lengths of this right angle triangle are 6 and 4.
Answer:

Step-by-step explanation:
we know that
The expression Subtract
from
is equivalent to the algebraic equation


Group terms that contain the same variable
Combine like terms


