F(x) = m1x + b1
g(x) = m2x + b2
f(g(x)) = f(m2x + b2) = m1(m2x + b2) + b1 = m1m2x + b2 + b1
a.) f of g is also a linear function.
b.) slope is m1m2
I don’t really see a question-
The bridge attached is drawn according to given dimensions, and it doesn't look right. Please double check the given dimensions.
Calculations:
Horizontal part of bottom chord below the 70 degree triangle
= 15.1*cos(70) = 5.16 (which is a major prt of the 6.3 units.
Height of vertical pieces DF and EH
= 15.1*sin(70) = 14.19
Note that structurally, DF and EH do not help in reducing stress on the bridge, since they are perpendicular to the bottom chord.
Therefore
angle B = atan(14.19/(6.3-5.16))=85.41 degrees
I believe the whole geometry does not look right, esthetically, and structurally, since the compression members are much longer than the tension members in the middle. (The vertical members carry no force.)
If you can review the input data, or post a new question, I will be glad to help.
8x-4=2x+35
8x-2x=35+4
6x=39
X=39/6
Since the congruent operator is ≅ and since AD is congruent to BD, I'm going to assume that you want to prove that AD is congruent to BD.
1. DE is equal to CD by definition since D is the midpoint of CE.
2. AE is equal to BC since opposite sides of a rectangle are equal to each other.
3. Angle AEC is equal to Angle BCE since all angles in a rectangle are right angles and all right angles are equal to each other.
4. Triangles ADE and BDC are congruent to each other because we have SAS congruence for both triangles.
5. AD is congruent to BC since they're corresponding sides of congruent triangles.