Answer:
Given A triangle ABC in which
∠C =90°,∠A=20° and CD ⊥ AB.
In Δ ABC
⇒∠A + ∠B +∠C=180° [ Angle sum property of triangle]
⇒20° + ∠B + 90°=180°
⇒∠B+110° =180°
∠B =180° -110°
∠B = 70°
In Δ B DC
∠BDC =90°,∠B =70°,∠BC D=?
∠BDC +,∠B+∠BC D=180°[ angle sum property of triangle]
90° + 70°+∠BC D =180°
∠BC D=180°- 160°
∠BC D = 20°
In Δ AC D
∠A=20°, ∠ADC=90°,∠AC D=?
∠A + ∠ADC +∠AC D=180° [angle sum property of triangle]
20°+90°+∠AC D=180°
110° +∠AC D=180°
∠AC D=180°-110°
∠AC D=70°
So solution are, ∠AC D=70°,∠ BC D=20°,∠DB C=70°
Answer:
<h2>1.04</h2>
Step-by-step explanation:
<h2>Hope this helps. Mark as brainlest plz!</h2>
Answer:
y = 2 -√(x+1)
Step-by-step explanation:
The square root function is reflected across the x-axis and shifted 1 unit to the left and 2 units up.
y = -√x . . . . . reflects the function across the x-axis
y = -√(x+1) . . . shifts the reflected function 1 unit to the left
y = 2 -√(x +1) . . . shifts the above function 2 units up
The graph is of the equation y = 2 -√(x+1).
Answer:
Y= 1
Step-by-step explanation:
Given the expression f(x) = 3x - 3.
To solve for the asymptote y
Firstly we need to solve for x
3x-3=0
3x=3
x= 3/3
x=1
Hence the asymptote of the function y=1
(a) If

is the mass (in mg) remaining after

years, then


(b)

(c)