You forgot to include the options. This might help, though.
Answer: The scale factor is 4
Step-by-step explanation:
We know that the pyramids are similar. The volume of one of these pyramids is 13,824 cubic feet and the volume of the other one is 216 cubic feet. Then:

By Similar solids theorem, if two similar solids have a scale factor of
, then corresponding volumes have a ratio of 
Then:

Knowing this, we can find the scale factor. This is:
![\frac{13,824}{216}=\frac{a^3}{b^3}\\\\\frac{13,824}{216}=(\frac{a}{b})^3\\\\\frac{a}{b}=\sqrt[3]{\frac{13,824}{216}}\\\\scale\ factor=\frac{a}{b}=4](https://tex.z-dn.net/?f=%5Cfrac%7B13%2C824%7D%7B216%7D%3D%5Cfrac%7Ba%5E3%7D%7Bb%5E3%7D%5C%5C%5C%5C%5Cfrac%7B13%2C824%7D%7B216%7D%3D%28%5Cfrac%7Ba%7D%7Bb%7D%29%5E3%5C%5C%5C%5C%5Cfrac%7Ba%7D%7Bb%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B13%2C824%7D%7B216%7D%7D%5C%5C%5C%5Cscale%5C%20factor%3D%5Cfrac%7Ba%7D%7Bb%7D%3D4)
Answer:88
Step-by-step explanation:
3.14(3(2) + 3(4))
3.14( 6 + 12)
3.14(18)
=56.52
N / 2
400 / 2 = 200
200 / 2 = 100
100 / 2 = 50
50 / 2 = 25
25 / 2 = 12.5