Answer: x = 24
Step-by-step explanation:
There are two triangles here; all angles in a triangle add up to 180, so in the first triangle we have two angles.
We add 94 and 41 together, and this gives us 135.
Now, we find the third angle of this triangle and the angle of the inner triangle by doing 180 - 135.
This gives us 45, and now we can calculate for x using the same method we used above.
111 + 45 = 156
180 - 156 = 24
Thus, x is equal to 24 degrees.
Option A:
The length of diagonal JL is
.
Solution:
In the quadrilateral, the coordinates of J is (1, 6) and L is (7, 3).
So that, 
To find the length of the diagonal JL.
Using distance formula:






units
The length of diagonal JL is
.
Option A is the correct answer.
Step-by-step explanation:
<h3>
<u>Given Question </u></h3>
The sum of the series is
![\tt{ {\bigg[1\dfrac{2}{3} \bigg]}^{2} + {\bigg[2\dfrac{1}{3} \bigg]}^{2} + {3}^{2} + {\bigg[3\dfrac{2}{3} \bigg]}^{2} + - - 10 \: terms}](https://tex.z-dn.net/?f=%5Ctt%7B%20%7B%5Cbigg%5B1%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B2%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B3%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B3%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%2010%20%5C%3A%20terms%7D)





Given series is
![\rm :\longmapsto\: {\bigg[1\dfrac{2}{3} \bigg]}^{2} + {\bigg[2\dfrac{1}{3} \bigg]}^{2} + {3}^{2} + {\bigg[3\dfrac{2}{3} \bigg]}^{2} + - - - 10 \: terms](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3A%20%7B%5Cbigg%5B1%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B2%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B3%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B3%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%20-%2010%20%5C%3A%20terms)
can be rewritten as
![\rm \: = \: {\bigg[\dfrac{5}{3} \bigg]}^{2} + {\bigg[\dfrac{7}{3} \bigg]}^{2} + {\bigg[\dfrac{9}{3} \bigg]}^{2} + {\bigg[\dfrac{11}{3} \bigg]}^{2} + - - - 10 \: terms](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7B%5Cbigg%5B%5Cdfrac%7B5%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B%5Cdfrac%7B7%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B%5Cdfrac%7B9%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20%20%7B%5Cbigg%5B%5Cdfrac%7B11%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%20-%2010%20%5C%3A%20terms)
![\rm \: = \: \dfrac{1}{9}[ {5}^{2} + {7}^{2} + {9}^{2} + - - - 10 \: terms \: ]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5B%20%7B5%7D%5E%7B2%7D%20%2B%20%20%7B7%7D%5E%7B2%7D%20%2B%20%20%7B9%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%20-%2010%20%5C%3A%20terms%20%5C%3A%20%5D)
Now, here, 5, 7, 9 forms an AP series with first term 5 and common difference 2.
So, its general term is given by 5 + ( n - 1 )2 = 5 + 2n - 2 = 2n + 3
So, above series can be represented as

![\rm \: = \: \dfrac{1}{9}\displaystyle\sum_{n=1}^{10}\bigg[ {4n}^{2} + 9 + 12n\bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D%5Cbigg%5B%20%7B4n%7D%5E%7B2%7D%20%2B%209%20%2B%2012n%5Cbigg%5D)
![\rm \: = \: \dfrac{1}{9}\bigg[\displaystyle\sum_{n=1}^{10} {4n}^{2} + \displaystyle\sum_{n=1}^{10}9 + 12\displaystyle\sum_{n=1}^{10}n\bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5Cbigg%5B%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D%20%7B4n%7D%5E%7B2%7D%20%2B%20%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D9%20%2B%2012%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7Dn%5Cbigg%5D)
![\rm \: = \: \dfrac{1}{9}\bigg[4\displaystyle\sum_{n=1}^{10} {n}^{2} +9 \displaystyle\sum_{n=1}^{10}1 + 12\displaystyle\sum_{n=1}^{10}n\bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5Cbigg%5B4%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D%20%7Bn%7D%5E%7B2%7D%20%2B9%20%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D1%20%2B%2012%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7Dn%5Cbigg%5D)
![\rm \: = \: \dfrac{4}{9}\bigg[\dfrac{10(10 + 1)(20 + 1)}{6} \bigg] + 10 + \dfrac{4}{3}\bigg[\dfrac{10(10 + 1)}{2} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B4%7D%7B9%7D%5Cbigg%5B%5Cdfrac%7B10%2810%20%2B%201%29%2820%20%2B%201%29%7D%7B6%7D%20%5Cbigg%5D%20%2B%2010%20%2B%20%5Cdfrac%7B4%7D%7B3%7D%5Cbigg%5B%5Cdfrac%7B10%2810%20%2B%201%29%7D%7B2%7D%20%5Cbigg%5D)
![\rm \: = \: \dfrac{4}{9}\bigg[\dfrac{10(11)(21)}{6} \bigg] + 10 + \dfrac{4}{3}\bigg[\dfrac{10(11)}{2} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B4%7D%7B9%7D%5Cbigg%5B%5Cdfrac%7B10%2811%29%2821%29%7D%7B6%7D%20%5Cbigg%5D%20%2B%2010%20%2B%20%5Cdfrac%7B4%7D%7B3%7D%5Cbigg%5B%5Cdfrac%7B10%2811%29%7D%7B2%7D%20%5Cbigg%5D)



Hence,
![\boxed{\tt{ {\bigg[1\dfrac{2}{3} \bigg]}^{2} + {\bigg[2\dfrac{1}{3} \bigg]}^{2} + {3}^{2} + {\bigg[3\dfrac{2}{3} \bigg]}^{2} + - - 10 \: terms = \frac{2290}{9}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctt%7B%20%7B%5Cbigg%5B1%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B2%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B3%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B3%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%2010%20%5C%3A%20terms%20%3D%20%20%5Cfrac%7B2290%7D%7B9%7D%7D%7D)
4\7 x 3\9 = 12\63
4 x 3 = 12
7 x 9 = 63
Hope this helps!
Answer:
a and c
Step-by-step explanation:
a and c's exponents are in decreasing order