Answer:
An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. In contrast, an anaerobic organism (anaerobe) is any organism that does not require oxygen for growth. Some anaerobes react negatively or even die if oxygen is present.
Answer:
Cloud iridescence
Sunlight travels through the cloud and is diffracted by the droplets, creating the rainbow effect. It can appear as a patch or band at the cloud's edges and changes as the cloud evolves.
Explanation:
Answer:
Exponential growth may occur in environments where there are few individuals and plentiful resources, but when the number of individuals becomes large enough, resources will be depleted, slowing the growth rate.
Explanation:
Eventually, the growth rate will plateau or level off.
Answer:
Explanation:
Vascular plants have tubelike structures that carry water, nutrients, and other substances throughout the plant. Nonvascular plants do not have these tubelike structures and use other ways to move water and substances.
Vascular plants are said to have a true stem, leaves, and roots due to the presence of vascular tissues. Non-vascular plants do not have true roots, stems, or leaves and the tissues present are the least specialized forms of tissue. Some examples of vascular plants include maize, mustard, rose, cycad, ferns, clubmosses, grasses. Some examples of non-vascular plants include moss, algae, liverwort, and hornwort.
How vascular plants work through osmosis
The xylem of vascular plants consists of dead cells placed end to end that form tunnels through which water and minerals move upward from the roots to the rest of the plant. Through the xylem vessels, water enters and leaves cells through osmosis.
How non vascular plants work through osmosis
Because non vascular plants do not have the xylem and phloem ystem, they absorb water right into their cells through their leaves when it rains or when dew falls. Internal cells get their water by passive osmosis. While, they use rhizoids to transport nutrients and minerals.
(See figure below, where meiosis I begins with a diploid (2n = 4) cell and ends with two haploid (n = 2) cells.) In humans (2n = 46), who have 23 pairs of chromosomes, the number of chromosomes is reduced by half at the end of meiosis I (n = 23).