Answer:
35
Step-by-step explanation:
35 is exactly 152 but since its asking for greater then you're right it is 36.
But since it says '>' it means not equal to so it would be:
x > 35
or
x ≥ 36
Answer:
11 meters
Step-by-step explanation:
Lets say that w = width of the rectangle, to start. If the length of the rectangle is 3 meters greater than 2 times the width, the length of the rectangle is equal to 3 + 2w.
The perimeter of the rectangle is 2 * length of rectangle + 2 * width of the rectangle. With the perimeter being equal to 30 and width being w and length being 2w+3:
The perimeter of the rectangle is 2(w) + 2(2w+3) = 30.
We first need to find out w first, which will give us the width of the rectangle. Taking it step by step, we get:
2w + 4w + 6 = 30
6w + 6= 30
6w = 24 which is done by subtracting both sides by 6 to put the variables on one side and the values on the other side
w = 4 which is done by dividing 6 on both sides
Ultimately, this gets width to be 4 meters. Now that we found the width, we need to plug w = 4 into the equation we set up for length which is 2w+3.
That being said, the ANSWER is:
length of rectangle = 2(4)+3 = 11 meters
Hope this helps! :)
Step-by-step explanation:
follow the above attachment, hope this helps you.
1) 1
2) PA: between 2 and 3.
2) PB: Unsure about it.
Answer:
Before we graph
we know that the slope, mx, could be read as
. To graph the the equation of the line, we begin at the point (0,0). From that point, because our rise is negative (-1), instead of moving upwards or vertically, we will move downards. Therefore, from point 0, we will vertically move downwards one time. Now, our point is on point -1 on the y-axis. Now, we have 2 as our run. From point -1, we move to the right two times. We land on point (2,-1). Because we need various points to graph this equation, we must continue on. In the end, the graph will look like the first graph given.
For the equation y = 2, the line will be plainly horizontal. Why? Because x has no value in the equation. The variable
does not exist in this linear equation. Therefore, it will look like the second graph below. We graph this by plotting the point, (0,2), on the y-axis.