Answer:
-0.233 m left of diverging lens and ( 0.12 - 0.233 ) = -113 m left of conversing
and
0.023 m right of diverging lens
Explanation:
given data
focal length f2 = 14 cm = -0.14 m
Separation s = 12 cm = 0.12 m
focal length f1 = 21 cm = 0.21 m
distance u1 = 38 cm
to find out
final image be located and Where will the image
solution
we find find image location i.e v2
so by lens formula v1 is
1/f = 1/u + 1/v ...............1
v1 = 1/(1/f1 - 1/u1)
v1 = 1/( 1/0.21 - 1/0.38)
v1 = 0.47 m
and
u2 = s - v1
u2 = 0.12 - 0.47
u2 = -0.35
so from equation 1
v2 = 1/(1/f2 - 1/u2)
v2 = 1/(-1/0.14 + 1/0.35)
v2 = -0.233 m
so -0.233 m left of diverging lens and ( 0.12 - 0.233 ) = -113 m left of conversing
and
for Separation s = 45 cm = 0.45 m
v1 = 1/(1/f1 - 1/u1)
v1 =0.47 m
and
u2 = s - v1
u2 = 0.45 - 0.47 =- 0.02 m
so
v2 = 1/(1/f2 - 1/u2)
v2 = 1/(-1/0.14 + 1/0.02)
v2 = 0.023
so here 0.023 m right of diverging lens
I think it's 96 because 1 inch = 12 centimeters so 8 multiply by 12 is 96 yah its 96
Answer:
0.00001 %
Explanation:
The distance from satellite = 20000 km
Position range = 2 m
The percentage uncertainty is given by dividing the distance from satellite by the position range of desired accuracy.
Percentage uncertainty is given by

The percentage uncertainty that is required is 0.00001 %