The sun is approximately 27,000 light years away from the center of our galaxy.
I assume there are choices to this question that you forgot to include. No matter, I could just lay out the concept so that you can understand the gist.
The best way to approach this is to know the definition of momentum. In physics, momentum is always defined in terms of equation. For momentum, it is the product of the mass and velocity. Therefore, any increase of these two parameters would promote greater momentum. The greater the mass paired with the faster the velocity, the greater the momentum.
The easiest way to answer this question is by realizing there are relating the velocities of the two cars. To tackle this problem, you have to understand the picture. Car 1 travels at 35m/s and Car 2 travels at 25m/s. Based on relative velocities, we can understand that Car 1 travels 10m/s faster than Car 2 every second. So we can interpret Car 1's relative velocity to Car 2 as 10m/s. Car 1 needs to travel 10m/s till a point of catching up to Car 2 which is 462m away.
v = 10m/s
d = 462m
v = d/t
(10) = (462)/t
t = 46.2s
So it takes 46.2 seconds for Car 1 to catch up to Car 2, but the question is asking how far does Car 1 travel to catch up. So we have to use Car 1's velocity and not the relative velocity:
v = 35m/s
v = d/t
(35) = d/(46.2)
d = 1617m
Car 1 traveled a total distance of 1617m.
Answer:
w = 706.32 [N]
Explanation:
The force due to gravitational acceleration can be calculated by means of the product of mass by gravitational acceleration.
w = m*g
where:
w = weight [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
Then we have:
![w = 72*9.81\\w = 706.32 [N]](https://tex.z-dn.net/?f=w%20%3D%2072%2A9.81%5C%5Cw%20%3D%20706.32%20%5BN%5D)
Pollution is a giant sorce to global warming