The answer is <span>A. Speed=100 million m/s and frequency = 50 million Hz.</span>
Let's calculate for each choice the wavelength using the equation:
v = f × λ ⇒ λ = v ÷ f<span>
where:
v - the speed,
f - the frequency,
</span>λ - the wavelength.
A:
v = 100 000 000 m/s
f = 50 000 000 Hz = 50 000 000 1/s (Since f = 1/T, so units are Hz = 1/s)
⇒ λ = 100 000 000 ÷ 50 000 000 = 2 m
B:
v = 150 000 000 m/s
f = 1 500 Hz = 1 500 1/s
⇒ λ = 150 000 000 m/s ÷ 1 500 = 100 000 m
B:
v = 300 000 000 m/s
f = 100 Hz = 100 1/s
⇒ λ = 300 000 000 m/s ÷ 100 = 3 000 000 m
According to these calculations, the shortest wavelength is needed for choice A.
PE = mgh
m = 60 kg
g = 10 m/s
h = X
_______
3000 = 60×10×X = 5 m
The resistance of two things in series is the SUM of their individual resistances. So the resistance of two bulbs in series is <u><em>double</em></u> the resistance of one bulb.
(If they're in parallel, their combined resistance is <u><em>1/2</em></u> the resistance of one bulb.)
So two bulbs <em>in series</em> is the greater resistance. <em>(a) </em>
Answer:
the first one
Explanation:
an atoms ability to attract other electrons and form a chemical bond
Answer:
It should be 92 mi/h
Explanation:
Because there is no air resistance there is nothing pushing against it to slow it down, so only the initial force and gravity are acting on the ball