Question:
Veronica is choosing between two health clubs. after how many months will the total cost for each health club be the same? yoga studio a: membership: $24.00 monthly fee: 21.50. yoga studio b: membership: $41.00 monthly fee: $17.25
Answer:
It takes 4 years for the total cost of each club to become equal
Step-by-step explanation:
Given:
For yoga studio A:
membership: $24.00
monthly fee: 21.50.
For yoga studio B:
membership: $41.00
monthly fee: $17.25
To Find:
Number of months after which the total cost for each health club be the same = ?
Solution:
Let x be the number of months of membership, and y be equal the total cost.
For Yoga club A
y = 21.50 x + 24
For Yoga club B
y = 17.25 x + 41.00
we know that the prices, y , would be equal, we can set the two equations equal to each other.
21.50 x + 24 =17.25 x+ 41.00
Grouping the like terms,
21.50x - 17.25 x= 41.00
- 24
4.25x=17
x=
x = 4
I believe there was a typo in the question. The equation states 65, buy the chart states 55. This is not linear at all.
Answer:
1 false
2 true
3 true
4 false
5 true
Step-by-step explanation:
f(a) = (2a - 7 + a^2) and g(a) = (5 – a).
1 false f(a) is a second degree polynomial and g(a) is a first degree polynomial
When added together, they will be a second degree polynomial
2. true When we add and subtract polynomials, we still get a polynomial, so it is closed under addition and subtraction
3. true f(a) + g(a) = (2a - 7 + a^2) + (5 – a)
Combining like terms = a^2 +a -2
4. false f(a) - g(a) = (2a - 7 + a^2) - (5 – a)
Distributing the minus sign (2a - 7 + a^2) - 5 + a
Combining like terms a^2 +3a -12
5. true f(a)* g(a) = (2a - 7 + a^2) (5 – a).
Distribute
(2a - 7 + a^2) (5) – (2a - 7 + a^2) (a)
10a -35a +5a^2 -2a^2 -7a +a^3
Combining like term
-a^3 + 3 a^2 + 17 a - 35
Answer:
caca water
pee water
Step-by-step explanation:
Elimination, Multiply the second equation by -1, then add the equations together.