Answer:
The answer is D.
Step-by-step explanation:
First you have to get rid of brackets by expanding :
![3 {q}^{2} + {r}^{3} + 5r - 8q + 2( {q}^{2} + r)](https://tex.z-dn.net/?f=3%20%7Bq%7D%5E%7B2%7D%20%20%2B%20%20%7Br%7D%5E%7B3%7D%20%20%2B%205r%20-%208q%20%2B%202%28%20%7Bq%7D%5E%7B2%7D%20%20%2B%20r%29)
![= 3 {q}^{2} + {r}^{3} + 5r - 8q + 2 {q}^{2} + 2r](https://tex.z-dn.net/?f=%20%3D%203%20%7Bq%7D%5E%7B2%7D%20%20%2B%20%20%7Br%7D%5E%7B3%7D%20%20%2B%205r%20-%208q%20%2B%202%20%7Bq%7D%5E%7B2%7D%20%20%2B%202r)
Next you have to simplify by collecting like terms :
![{r}^{3} + 3 {q}^{2} + 2 {q}^{2} + 5r + 2r - 8q](https://tex.z-dn.net/?f=%20%7Br%7D%5E%7B3%7D%20%2B%20%203%20%7Bq%7D%5E%7B2%7D%20%20%2B%202%20%7Bq%7D%5E%7B2%7D%20%20%2B%205r%20%2B%202r%20-%208q)
![= {r}^{3} + 5 {q}^{2} - 8q + 7r](https://tex.z-dn.net/?f=%20%3D%20%20%7Br%7D%5E%7B3%7D%20%20%2B%205%20%7Bq%7D%5E%7B2%7D%20%20-%208q%20%2B%207r)
Answer:
25
Step-by-step explanation:
I) there are 360 degrees in a circle. So subtract all the numbers from 360 to get the angle for econ.
That angle is 65 degrees
ii) If 95 degrees represents 228 books, then 360 degrees represents "x" (total) books. So we have an equation:
<u>95</u> = <u>360</u>
228 x
Solve for x, and we get x = 864
iii) The percentage is 80 degrees out of 360 degrees or 2/9 or roughly 0.222 or 22.2%
Answer:
Step-by-step explanation:
This is the image of the graph you determine if that's perpendicular.
Perpendicular definition - In elementary geometry, the property of being perpendicular is the relationship between two lines which meet at a right angle. The property extends to other related geometric objects. A line is said to be perpendicular to another line if the two lines intersect at a right angle.
Answer:
- angle at A: 51°
- base angles: 64.5°
Step-by-step explanation:
The measure of the inscribed angle BAC is half the measure of the intercepted arc BC, so is 102°/2 = 51°.
The base angles at B and C are the complement of half this value, or ...
90° -(51°/2) = 64.5°
The angle measures in the triangle are ...
∠A = 51°
∠B = ∠C = 64.5°