The idea is to use the tangent line to at in order to approximate .
We have
so the linear approximation to is
Hence and .
Then
Answer:
mean
Step-by-step explanation:
mean .
mean is regarded as the average value calculated from a data set .
mean = total sum of values / total number of values.
For this case, we must indicate which of the given functions is not defined for
By definition, we know that:
has a domain from 0 to infinity.
Adding or removing numbers to the variable within the root implies a translation of the function vertically or horizontally. For it to be defined, the term within the root must be positive.
Thus, we observe that:
is not defined, the term inside the root is negative when .
While if it is defined for
, your domain is given by all real numbers.
Adding or removing numbers to the variable within the root implies a translation of the function vertically or horizontally. In the same way, its domain will be given by the real numbers, independently of the sign of the term inside the root.
So, we have:
with x = 0: is defined.
with x = 0: in the same way is defined.
Answer:
Option b
You can find counterexamples to disprove this claim. We have positive integers that are perfect square numbers; when we take the square root of those numbers, we get an integer.
For example, the square root of 1 is 1, which is an integer. So if y = 1, then the denominator becomes an integer and thus we get a quotient of two integers (since x is also defined to be an integer), the definition of a rational number.
Example: x = 2, y = 1 ends up with which is rational. This goes against the claim that is always irrational for positive integers x and y.
Any integer y that is a perfect square will work to disprove this claim, e.g. y = 1, y = 4, y= 9, y = 16. So it is not always irrational.