First 6 terms are 5, 7, 9, 11, 13 and 15
Step-by-step explanation:
- Step 1: Given terms in the sequence = 3 + 2x. Find the first 6 terms.
a(1) = 3 + 2 × 1 = 3 + 2 = 5
a(2) = 3 + 2 × 2 = 3 + 4 = 7
a(3) = 3 + 2 × 3 = 3 + 6 = 9
a(4) = 3 + 2 × 4 = 3 + 8 = 11
a(5) = 3 + 2 × 5 = 3 + 10 = 13
a(6) = 3 + 2 × 6 = 3 + 12 = 15
A senior ticket costs $10, while a student ticket costs $8. You can solve this system of equations by the elimination method.
We can use x as the variable for the senior tickets, and y as the variable for the student tickets and represent it with these equations:
10x+12y=212 and 12x+14y=232
Next, multiply each entire equation by a variable so they can eliminate each other. I used 12 and -10 here so it would be 120x-120x to eliminate that variable.
12(10x+14y=212) and -10(12x+14y=232)
Our new equations are:
(120x +168y= 2544) and (-120x-140y=-2320)
You can then subtract one of the equations from the other leaving you with 28y=224 and solve it for y to get 8.
So the price of a student ticket is 8.
Pick any of the original equations and by replacing y with 8, you can solve to find x. (X is the variable we assigned for senior tickets)
10x+14(8)=212
10x+112=212
10x=212-112
10x= 100
1x=10
Answer:
f(-3) = 16
Step-by-step explanation:
You substitute -3 to x.
f(-3) = 2(-3)² - 5(-3) - 17
f(-3) = 16.
As for the coordinates, the coordinates plotted in the graph above are (1,-1) and (2,-2).
Answer:
j i a few u can call you in bright mode of switch ij you can see it on GoDaddy to u all happy with it and k bol raha h ki jay ram ram ram