It is 780.99999 sorry if i'm incorrect
The largest possible volume of the given box is; 96.28 ft³
<h3>How to maximize volume of a box?</h3>
Let b be the length and the width of the base (length and width are the same since the base is square).
Let h be the height of the box.
The surface area of the box is;
S = b² + 4bh
We are given S = 100 ft². Thus;
b² + 4bh = 100
h = (100 - b²)/4b
Volume of the box in terms of b will be;
V(b) = b²h = b² * (100 - b²)/4b
V(b) = 25b - b³/4
The volume is maximum when dV/db = 0. Thus;
dV/db = 25 - 3b²/4
25 - 3b²/4 = 0
√(100/3) = b
b = 5.77 ft
Thus;
h = (100 - (√(100/3)²)/4(5.77)
h = 2.8885 ft
Thus;
Largest volume = [√(100/3)]² * 2.8885
Largest Volume = 96.28 ft³
Read more about Maximizing Volume at; brainly.com/question/1869299
#SPJ1
You just need to substitute the the given function. So if f(-8) then you fill in f(n)=2n+4 which would be f(-8)=2(-8)+4. Which is -12.
hope this helps !
The formula to find the midpoint of a segment is ((x1 + x2)/2,),(y1 + y2)/2).
The x coordinate of the first point is -4, and the x coordinate of the second point is -8. The y coordinate of the first point is 6, and the y coordinate of the second point is -2. Now, we can plug these into our formula.
((-4 + (-8))/2), (6 + (-2))/2)) = (-12/2), (4/2) = (-6, 2)
So, (-6, 2) is the midpoint of the segment.
Okay, all we need to do is divide 8 from both sides:
-104/8=-13
So x=-13
:D