The image for this is attached for reference. This problem can be used by the Pythagorean equation. To make solving convenient, let us see only one part of the tent. Hence, one side is half of the tend width which is 16/2ft. Height is 12 ft. The unknown side is the hypotenuse. The answer is:
Answer:
α² +β² = 3 4/9
Step-by-step explanation:
Assuming α and β are solutions to the equation, it can be factored as ...
(x -α)(x -β) = 0
Expanding this, we get ...
x² -(α +β)x +αβ = 0
Dividing the original equation by 3, we find ...
x² +(1/3)x -5/3 ≡ x² -(α+β)x +αβ ⇒ (α+β) = -1/3, αβ = -5/3
We know that the square (α+β)² can be expanded to ...
(α +β)² = α² +β² +2αβ
α² +β² = (α +β)² -2αβ . . . . . . subtract 2αβ
Substituting the values for (α+β) and αβ, we find the desired expression is ...
α² +β² = (-1/3)² -2(-5/3) = 1/9 +10/3 = 31/9
α² +β² = 3 4/9
She originally had $320 in her savings. 48 times 100= 4,800. 4,800 divided by 15=320.