Answer:
38
Explanation:
In eukaryotic cells, the maximum production of ATP molecules generated per glucose molecule during cellular respiration is 38, i.e., 2 ATP molecules from glycolysis, 2 ATP molecules from the Krebs cycle, and 34 ATP molecules from the Electron Transport Chain (ETC). <em>In vivo</em> (i.e., in the cell), this number is not reached because there is an energy cost associated with the movement of pyruvate (CH3COCOO−) and adenosine diphosphate (ADP) into the mitochondrial matrix, thereby the predicted yield is approximately 30 ATP molecules per glucose molecule. In aerobic bacteria, aerobic respiration of glucose occurs in the cytoplasm (since bacteria do not contain membrane-bound organelles such as mitochondria), and thereby, in this case, it is expected that aerobic respiration using glucose yields 38 ATP per glucose molecule.
1. True
2. False
3. True
4. True
5. False
The role of mass extinction in evolution. At the most basic level, mass extinctions reduce diversity by killing off specific lineages, and with them, any descendant species they might have given rise to. ... But mass extinction can also play a creative role in evolution, stimulating the growth of other branches.
Opioid drugs. They disrupt the natural production of norepinephrine and act as central nervous system depressants. Opioids block pain sensations, induce drowsiness, reduce body temperature, and slow heart rate, blood pressure, and respiration functions.
Answer:
1. Double helix is the description of the structure of a DNA molecule. A DNA molecule consists of two strands that wind around each other like a twisted ladder. Each strand has a backbone made of alternating groups of sugar (deoxyribose) and phosphate groups.
2. The DNA double helix. The two sides are the sugar-phosphate backbones, composed of alternating phosphate groups and deoxyribose sugars. The nitrogenous bases face the center of the double helix.
3. A nucleotide is an organic molecule that is the building block of DNA and RNA. ... A nucleotide is made up of three parts: a phosphate group, a 5-carbon sugar, and a nitrogenous base. The four nitrogenous bases in DNA are adenine, cytosine, guanine, and thymine.
4. A nucleotide is made up of three parts: a phosphate group, a 5-carbon sugar, and a nitrogenous base. The four nitrogenous bases in DNA are adenine, cytosine, guanine, and thymine.
5. In genetics, the term junk DNA refers to regions of DNA that are non-coding. Some of this noncoding DNA is used to produce noncoding RNA components such as transfer RNA, regulatory RNA and ribosomal RNA
Hopes this helps.