<h3>
Answer: Choice C) </h3><h3>
The system can only be independent and consistent</h3>
===========================================================
Explanation:
Let's go through the answer choices
- A) This isn't possible. Either a system is consistent or inconsistent. It cannot be both at the same time. The term "inconsistent" literally means "not consistent". It's like saying a cup is empty and full at the same time. We can rule out choice A.
- B) This is similar to choice A and we cannot have a system be both independent and dependent. Either a system is independent or dependent, but not both. Independence means that the two equations are not tied together, while dependent equations are some multiple of each other. We can rule out choice B.
- C) We'll get back to this later
- D) The independence/dependence status is unknown without the actual equations present. However, we know 100% that this system is not inconsistent. This is because the system has at least one solution. Inconsistent systems do not have any solutions at all (eg: parallel lines that never cross). We can rule out choice D because of this.
Going back to choice C, again we don't have enough info to determine if the system is independent or dependent, but we at least know it's consistent. Consistent systems have one or more solutions. So part of choice C can be confirmed. It being the only thing left means that it has to be the final answer.
If it were me as the teacher, I'd cross out the "independent" part of choice C and simply say the system is consistent.
Answer:
znd i cant really tell the numbers on the side
Step-by-step explanation:
i like ur shirt XD
Answer:
There is no sufficient evidence to reject the company's claim at the significance level of 0.05
Step-by-step explanation:
Let
be the true mean weight per apple the company ship. We want to test the next hypothesis
vs
(two-tailed test).
Because we have a large sample of size n = 49 apples randomly selected from a shipment, the test statistic is given by
which is normally distributed. The observed value is
. The rejection region for
is given by RR = {z| z < -1.96 or z > 1.96} where the area below -1.96 and under the standard normal density is 0.025; and the area above 1.96 and under the standard normal density is 0.025 as well. Because the observed value 1.4583 does not fall inside the rejection region RR, we fail to reject the null hypothesis.
Answer:
1 2 3 6
Step-by-step explanation:
1x6=6
2x3=6
3x2=6
6x1=6