Answer : The solubility of this compound in g/L is
.
Solution : Given,

Molar mass of
= 114.945g/mole
The balanced equilibrium reaction is,

At equilibrium s s
The expression for solubility constant is,
![K_{sp}=[Mn^{2+}][CO^{2-}_3]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BMn%5E%7B2%2B%7D%5D%5BCO%5E%7B2-%7D_3%5D)
Now put the given values in this expression, we get

The value of 's' is the molar concentration of manganese ion and carbonate ion.
Now we have to calculate the solubility in terms of g/L multiplying by the Molar mass of the given compound.

Therefore, the solubility of this compound in g/L is
.
Not all units of measurement are equal, but the value of each unit is used for its intended purpose, so we have different units of measurement for each problem.
Answer:
M KIO3 = 1.254 mol/L
Explanation:
∴ w KIO3 = 553 g
∴ mm KIO3 = 214.001 g/mol
∴ volumen sln = 2.10 L
⇒ mol KIO3 = (553 g)×(mol/210.001 g) = 2.633 mol
⇒ M KIO3 = (2.633 mol KIO3 / (2.10 L sln)
⇒ M KIO3 = 1.254 mol/L
The following steps are usually followed: The foreperson tells the court security officer that a verdict has been reached. The judge calls everyone, including you, back into the courtroom, The clerk in the courtroom asks the foreperson for the verdict. The verdict is read into the record in open court.
Answer:
A. 0.143 M
B. 0.0523 M
Explanation:
A.
Let's consider the neutralization reaction between potassium hydroxide and potassium hydrogen phthalate (KHP).
KOH + KHC₈H₄O₄ → H₂O + K₂C₈H₄O₄
The molar mass of KHP is 204.22 g/mol. The moles corresponding to 1.08 g are:
1.08 g × (1 mol/204.22 g) = 5.28 × 10⁻³ mol
The molar ratio of KOH to KHC₈H₄O₄ is 1:1. The reacting moles of KOH are 5.28 × 10⁻³ moles.
5.28 × 10⁻³ moles of KOH occupy a volume of 36.8 mL. The molarity of the KOH solution is:
M = 5.28 × 10⁻³ mol / 0.0368 L = 0.143 M
B.
Let's consider the neutralization of potassium hydroxide and perchloric acid.
KOH + HClO₄ → KClO₄ + H₂O
When the molar ratio of acid (A) to base (B) is 1:1, we can use the following expression.
