Answer:O D to protect the environment from harmful chemicals
Explanation:
Answer:
56.24g
Explanation:
To find the mass of N2O3 in 4.45 x 10^23 molecules, it must first be converted to moles by dividing the number of molecules in N2O3 by Avagadro's number (6.02 × 10^23).
number of moles in N2O3 = 4.45 x 10^23 ÷ 6.02 × 10^23
n = 4.45/6.02 × 10^(23 - 23)
n = 0.74 × 10^0
n = 0.74moles.
Using the formula below to find the mass of N2O3;
mole = mass ÷ molar mass
Molar mass of N2O3 = 14(2) + 16(3)
= 28 + 48
= 76g/mol
mass = mole × molar mass
Mass = 0.74 × 76
Mass = 56.24g
The correct answer is (B) Adding a dilute solution of HCl
<u>EXPLANATION</u>
The presence of carbonate ions can be tested by adding a dilute acid to the solution. The acid displaces Carbon (IV) oxide from the solution. Using HCl, and a carbonate of metal X.
XCO₃₍s₎ + 2HCl₍aq₎⇒ XCl₂₍aq₎+ H₂O₍l₎ + CO₂₍g₎
The gas produced is tested using calcium hydroxide to confirm whether it is carbon (IV) oxide.
Answer:
Polar covalent bond
Explanation:
When the electronegativity difference between two elements A and X is 0.8, the bond AX formed will most likely be a polar covalent bond.
A polar covalent bond is one whose electronegativity difference is between 0.5 and 2.1.
In such a bond type, we have heteronuclear species with one of the species having a higher electronegativity value.
- When electronegativity difference is less than 0.5, a non-polar covalent bond forms.
- If the value is greater than 2.1, an ionic bond will form.
Answer:
when atoms lose or gain electrons ions form
Explanation:
Please mark brainliest