A change of 1 Kelvin is exactly the same as a change of 1 degree Celsius.
Answer:
Approximately .
Explanation:
The gallium here is likely to be produced from a solution using electrolysis. However, the problem did not provide a chemical equation for that process. How many electrons will it take to produce one mole of gallium?
Note the Roman Numeral "" next to . This numeral indicates that the oxidation state of the gallium in this solution is equal to . In other words, each gallium atom is three electrons short from being neutral. It would take three electrons to reduce one of these atoms to its neutral, metallic state in the form of .
As a result, it would take three moles of electrons to deposit one mole of gallium atoms from this gallium solution.
How many electrons are supplied? Start by finding the charge on all the electrons in the unit coulomb. Make sure all values are in their standard units.
.
.
Calculate the number of electrons in moles using the Faraday's constant. This constant gives the size of the charge (in coulombs) on each mole of electrons.
.
It takes three moles of electrons to deposit one mole of gallium atoms . As a result, of electrons would deposit of gallium atoms .
Answer:
H2Br + 2KOH ----- K2Br + 2H2O
<span>Answer
is: activation energy of this reaction is 212,01975 kJ/mol.
Arrhenius equation: ln(k</span>₁/k₂) = Ea/R (1/T₂ - 1/T₁<span>).
k</span>₁<span> = 0,000643
1/s.
k</span>₂ = 0,00828
1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
1/T₁<span> = 1/622 K = 0,0016 1/K.
1/T</span>₂<span> = 1/666 K =
0,0015 1/K.
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol · (-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol · (-0,0001 1/K).
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
We use the following formula to calculate the number of atoms:
n (mol) = N(number of atoms) / NA
N(He) = n(mol) · NA
N(He) = 2,0 moles · 6.02·1023 = 12.04·1023 atoms