Answer:
-12
Step-by-step explanation:
(-17)- (3)+ (-2)= answer
go from left to right
Answer:
⣿⣯⣿⣟⣟⡼⣿⡼⡿⣷⣿⣿⣿⠽⡟⢋⣿⣿⠘⣼⣷⡟⠻⡿⣷⡼⣝⡿⡾⣿ ⣿⣿⣿⣿⢁⣵⡇⡟⠀⣿⣿⣿⠇⠀⡇⣴⣿⣿⣧⣿⣿⡇⠀⢣⣿⣷⣀⡏⢻⣿ ⣿⣿⠿⣿⣿⣿⠷⠁⠀⠛⠛⠋⠀⠂⠹⠿⠿⠿⠿⠿⠉⠁⠀⠘⠛⠛⠛⠃⢸⣯ ⣿⡇⠀⣄⣀⣀⣈⣁⠈⠉⠃⠀⠀⠀⠀⠀⠀⠀⠀⠠⠎⠈⠀⣀⣁⣀⣀⡠⠈⠉ ⣿⣯⣽⡿⢟⡿⠿⠛⠛⠿⣶⣄⠀⠀⠀⠀⠀⠀⠈⢠⣴⣾⠛⠛⠿⠻⠛⠿⣷⣶ ⣿⣿⣿⠀⠀⠀⣿⡿⣶⣿⣫⠉⠀⠀⠀⠀⠀⠀⠀⠈⠰⣿⠿⠾⣿⡇⠀⠀⢺⣿ ⣿⣿⠻⡀⠀⠀⠙⠏⠒⡻⠃⠀⠀⠀⠀⣀⠀⠀⠀⠀⠀⠐⡓⢚⠟⠁⠀⠀⡾⢫ ⣿⣿⠀⠀⡀⠀⠀⡈⣉⡀⡠⣐⣅⣽⣺⣿⣯⡡⣴⣴⣔⣠⣀⣀⡀⢀⡀⡀⠀⣸ ⣿⣿⣷⣿⣟⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢻⢾⣷⣿ ⣿⣿⣟⠫⡾⠟⠫⢾⠯⡻⢟⡽⢶⢿⣿⣿⡛⠕⠎⠻⠝⠪⢖⠝⠟⢫⠾⠜⢿⣿ ⣿⣿⣿⠉⠀⠀⠀⠀⠈⠀⠀⠀⠀⣰⣋⣀⣈⣢⠀⠀⠀⠀⠀⠀⠀⠀⠀⣐⢸⣿ ⣿⣿⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⢰⣿⣿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⣿ ⣿⣿⣿⣿⣦⡔⠀⠀⠀⠀⠀⠀⢻⣿⡿⣿⣿⢽⣿⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿ ⣿⣿⣿⣿⣿⣿⣶⣤⣀⠀⠀⠀⠘⠛⢅⣙⣙⠿⠉⠀⠀⠀⢀⣠⣴⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣤⣄⣅⠀⠓⠀⠀⣀⣠⣴⣺⣿⣿⣿⣿⣿⣿⣿⣿
Step-by-step explanation:
i nu speak that language
Answer:
A = 222 units^2
Step-by-step explanation:
To find the area of this trapezoid, first draw an imaginary horizontal line parallel to AD and connecting C with AB (Call this point E). Below this line we have the triangle CEB with hypotenuse 13 units and vertical side (21 - 16) units, or 5 units. Then the width of the entire figure shown can be obtainied using the Pythagorean Theorem:
(5 units)^2 + CE^2 = (13 units)^2, or 25 + CE^2 = 169. Solving this for CE, we get |CE| = 12.
The area of this trapezoid is
A = (average vertical length)(width), which here is:
(21 + 16) units
A = --------------------- * (12 units), which simplifies to:
2
A = (37/2 units)(12 units) = A = 37*6 units = A = 222 units^2
Answer:
x = 4
Step-by-step explanation:
ΔTRQ is an isosceles right triangle, so if we find the value of RT then the value of 'x' will be the same
We can find RT by creating a proportion based on the ratio of sides in a 30-60-90° triangle which, respectively, is 1 :
: 2
2
/RT =
/2
cross-multiply:
· RT = 4
RT = 4
Therefore, x = 4