Answer:
She fills 5/4 or 1 and 1/4 glass
Step-by-step explanation:
1/4 * 5=5/4
Complete Question
The complete question is shown on the first uploaded image
Answer:
First question
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}5\\-2\\\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C-2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Second question
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}5\\-2\\\end{array}\right] = \left[\begin{array}{ccc}{(-1 * 5 )+ (3* -2)}\\{(1 * 5)+ (4 * -2)}\\{(5 * 5) + (8*-2)}\end{array}\right] = \left[\begin{array}{ccc}{-11}\\{-3}\\{29}\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C-2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B%28-1%20%2A%205%20%29%2B%20%283%2A%20-2%29%7D%5C%5C%7B%281%20%2A%205%29%2B%20%284%20%2A%20-2%29%7D%5C%5C%7B%285%20%2A%205%29%20%2B%20%288%2A-2%29%7D%5Cend%7Barray%7D%5Cright%5D%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-11%7D%5C%5C%7B-3%7D%5C%5C%7B29%7D%5Cend%7Barray%7D%5Cright%5D)
Third question
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}-3\\4\\\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C4%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Fourth question
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}-3\\4\\\end{array}\right] = \left[\begin{array}{ccc}{(-1 * -3 )+ (3* 4)}\\{(1 * -3)+ (4 * 4)}\\{(5 * -3) + (8*4)}\end{array}\right] = \left[\begin{array}{ccc}{15}\\{13}\\{-23}\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C4%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B%28-1%20%2A%20-3%20%29%2B%20%283%2A%204%29%7D%5C%5C%7B%281%20%2A%20-3%29%2B%20%284%20%2A%204%29%7D%5C%5C%7B%285%20%2A%20-3%29%20%2B%20%288%2A4%29%7D%5Cend%7Barray%7D%5Cright%5D%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B15%7D%5C%5C%7B13%7D%5C%5C%7B-23%7D%5Cend%7Barray%7D%5Cright%5D)
Fifth question
The correct option is A
Step-by-step explanation:
From the question we are told that
The matrix A is ![A = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D)
The matrix B is ![B = \left[\begin{array}{ccc}5&{-3}\\{-2}&4\end{array}\right]](https://tex.z-dn.net/?f=B%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%26%7B-3%7D%5C%5C%7B-2%7D%264%5Cend%7Barray%7D%5Cright%5D)
The first question is to set up the product
, where
is the first column of matrix B, this shown as
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}5\\-2\\\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C-2%5C%5C%5Cend%7Barray%7D%5Cright%5D)
The second question is to calculate
, this is evaluated as
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}5\\-2\\\end{array}\right] = \left[\begin{array}{ccc}{(-1 * 5 )+ (3* -2)}\\{(1 * 5)+ (4 * -2)}\\{(5 * 5) + (8*-2)}\end{array}\right] = \left[\begin{array}{ccc}{-11}\\{-3}\\{29}\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C-2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B%28-1%20%2A%205%20%29%2B%20%283%2A%20-2%29%7D%5C%5C%7B%281%20%2A%205%29%2B%20%284%20%2A%20-2%29%7D%5C%5C%7B%285%20%2A%205%29%20%2B%20%288%2A-2%29%7D%5Cend%7Barray%7D%5Cright%5D%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-11%7D%5C%5C%7B-3%7D%5C%5C%7B29%7D%5Cend%7Barray%7D%5Cright%5D)
The third question is to set up the product
, where
is the second column of matrix B, this shown as
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}-3\\4\\\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C4%5C%5C%5Cend%7Barray%7D%5Cright%5D)
The fourth question is to calculate
, this is evaluated as
![Ab_1 = \left[\begin{array}{ccc}{-1}&{3}\\ 1 &4 \\5 &8\end{array}\right]\left[\begin{array}{ccc}-3\\4\\\end{array}\right] = \left[\begin{array}{ccc}{(-1 * -3 )+ (3* 4)}\\{(1 * -3)+ (4 * 4)}\\{(5 * -3) + (8*4)}\end{array}\right] = \left[\begin{array}{ccc}{15}\\{13}\\{-23}\end{array}\right]](https://tex.z-dn.net/?f=Ab_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B-1%7D%26%7B3%7D%5C%5C%201%20%264%20%5C%5C5%20%268%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%5C%5C4%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B%28-1%20%2A%20-3%20%29%2B%20%283%2A%204%29%7D%5C%5C%7B%281%20%2A%20-3%29%2B%20%284%20%2A%204%29%7D%5C%5C%7B%285%20%2A%20-3%29%20%2B%20%288%2A4%29%7D%5Cend%7Barray%7D%5Cright%5D%20%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B15%7D%5C%5C%7B13%7D%5C%5C%7B-23%7D%5Cend%7Barray%7D%5Cright%5D)
The fifth question is to determine the numerical expression for the first entry in the first column of AB using the row-column rule and from the calculation of
we see that it is

Answer:
14/1.8 = x/4
Step-by-step explanation:
Using similar triangles,
height of man/length of man's shadow = height of tree/length of tree's shadow
1.8/4 = x/14
x/14 = 1.8/4
If we cross-multiply, we have
1.8 × 14 = x × 4
dividing both sides by 4 and 1.8,we have
14/4 = x/1.8
x/1.8 = 14/4
So, the two expressions we have are
x/14 = 1.8/4 and x/1.8 = 14/4.
So, the answer is 14/1.8 = x/4 since the product 1.8 × 14 = x × 4 cannot be expressed in the given ratio.
Answer:
-3
Step-by-step explanation:
m=y2-y1/x2-x1
m=-6-3/-1-(-4)
m=-9/3
m=-3
Answer:
Since a/2⁽ⁿ ⁺ ¹⁾b < a/2ⁿb, we cannot find a smallest positive rational number because there would always be a number smaller than that number if it were divided by half.
Step-by-step explanation:
Let a/b be the rational number in its simplest form. If we divide a/b by 2, we get another rational number a/2b. a/2b < a/b. If we divide a/2b we have a/2b ÷ 2 = a/4b = a/2²b. So, for a given rational number a/b divided by 2, n times, we have our new number c = a/2ⁿb where n ≥ 1
Since
= a/(2^∞)b = a/b × 1/∞ = a/b × 0 = 0, the sequence converges.
Now for each successive division by 2, a/2⁽ⁿ ⁺ ¹⁾b < a/2ⁿb and
a/2⁽ⁿ ⁺ ¹⁾b/a/2ⁿb = 1/2, so the next number is always half the previous number.
So, we cannot find a smallest positive rational number because there would always be a number smaller than that number if it were divided by half.