3rd option.
at least shows that the number can be equal to 2, and also that 2 should be the smallest possible value of the number.
The perimeter of the regular polygon is 70 inches
<h3>How to determine the perimeter of the regular polygon?</h3>
The sides of the regular polygon is given as:
Side = 10 in
The regular polygon has 7 sides
So, the perimeter of the polygon is calculated as:
P = Side lengths * Number of sides
This gives
P = 10 inches * 7
Evaluate
P = 70 inches
Hence, the perimeter of the regular polygon is 70 inches
Read more about perimeter at
brainly.com/question/24571594
#SPJ1
Answer:
A,D,F
Step-by-step explanation:
if he drives 90 in 2 hours then in one hour its 45. 45 times 2 is 90. 45 times 3 is 135. 45 times 4 is 180. 45 times 5 is 225. 45 times 6 is 270. 45 times 7 is 315. and 45 times 8 is 360.
1a) False. A square is never a trapezoid. A trapezoid has only one pair of parallel sides while the other set of opposite sides are not parallel. Contrast this with a square which has 2 pairs of parallel opposite sides.
1b) False. A rhombus is only a rectangle when the figure is also a square. A square is essentially a rhombus and a rectangle at the same time. If you had a Venn Diagram, then the circle region "rectangle" and the circle region "rhombus" overlap to form the region for "square". If the statement said "sometimes" instead of "always", then the statement would be true.
1c) False. Any rhombus is a parallelogram. This can be proven by dividing up the rhombus into triangles, and then proving the triangles to be congruent (using SSS), then you use CPCTC to show that the alternate interior angles are congruent. Finally, this would lead to the pairs of opposite sides being parallel through the converse of the alternate interior angle theorem. Changing the "never" to "always" will make the original statement to be true. Keep in mind that not all parallelograms are a rhombus.
Answer:
Quadrant I: (1,1), (4,3)
Quadrant II: (-2, 3), (-1, 1)
Step-by-step explanation:
Quadrant I points have positive x and y values. Quandrant II points have negative x values and positive y values.