The area of the regular nonagon is 270 sq cm.
Step-by-step explanation:
Given,
Each side of a regular nonagon (b) = 10 cm
The length of apothem (h) = 6 cm.
To find the area of the nonagon.
Formula
The area of a nonagon with b as each side and h as apothem is = 9(
bh)
Now,
Putting the value of h and b we get,
Area = 9(
×10×6) sq cm = 270 sq cm
Hence, the area is 270 sq cm.
We obtain the joint PMF directly from the joint MGF:

![\implies\mathrm{Pr}[X=x,Y=y]=\begin{cases}0.1&\text{for }x=y=0\\0.2&\text{for }x=1,y=0\\0.3&\text{for }x=0,y=1\\0.4&\text{for }x=y=1\\0&\text{otherwise}\end{cases}](https://tex.z-dn.net/?f=%5Cimplies%5Cmathrm%7BPr%7D%5BX%3Dx%2CY%3Dy%5D%3D%5Cbegin%7Bcases%7D0.1%26%5Ctext%7Bfor%20%7Dx%3Dy%3D0%5C%5C0.2%26%5Ctext%7Bfor%20%7Dx%3D1%2Cy%3D0%5C%5C0.3%26%5Ctext%7Bfor%20%7Dx%3D0%2Cy%3D1%5C%5C0.4%26%5Ctext%7Bfor%20%7Dx%3Dy%3D1%5C%5C0%26%5Ctext%7Botherwise%7D%5Cend%7Bcases%7D)
Then
![\mathrm{Pr}[X=Y]=\mathrm{Pr}[X=Y=0]+\mathrm{Pr}[X=Y=1]=0.1+0.4=\boxed{0.5}](https://tex.z-dn.net/?f=%5Cmathrm%7BPr%7D%5BX%3DY%5D%3D%5Cmathrm%7BPr%7D%5BX%3DY%3D0%5D%2B%5Cmathrm%7BPr%7D%5BX%3DY%3D1%5D%3D0.1%2B0.4%3D%5Cboxed%7B0.5%7D)
Answer:
6
Step-by-step explanation:
you divide 24 by 4 4 goes into 24 6 times
Step-by-step explanation:
let width = w
if width = w, then length = w + 4
Therefore the perimeter is 2w + 2(w+4)
2w + 2(w+4) = 4w + 8
perimeter = 60cm
4w + 8 = 60
<em>-8</em>
4w = 52
<em>divide each side by 4</em>
w = 13
length = w+4
therefore, length = 17