Answer:
8. F) -5
9. D) (-2,3)
10. J) -10
Hey there!
Line passes through (4, -1) & is parallel to 2x -3y=9
Let's start off by identifying what our slope is. In the slope-intercept form y=mx+b, we know that "m" is our slope.
The given equation needs to be converted into slope-intercept form and we can do this by getting y onto its own side of the equal sign.
Start off by subtracting 2x from both sides.
-3y = -2x + 9
Then, divide both sides by -3.
y = (-2x + 9)/-3
Simplify.
y = 2/3x - 3
"M" is simply a place mat so if we look at our given line, the "m" value is 2/3. Therefore, our slope is 2/3.
We should also note that we're looking for a line that's parallel to the given one. This means that our new line has the same slope as our given line. Therefore, our new line has a slope of 2/3.
Now, we use point-slope form ( y-y₁=m(x-x₁) ) to complete our task of finding a line that passes through (4, -1). Our new slope is 2/3 & it passes through (4, -1).
y-y₁=m(x-x₁)
Let's start by plugging in 2/3 for m (our new slope), 4 for x1 and -1 for y1.
y - (-1) = 2/3(x - 4)
Simplify.
y + 1 = 2/3 + 8/3
Simplify by subtracting 1 from both sides.
y = 2/3x + 8/3 - 1
Simplify.
y = 2/3x + 5/3
~Hope I helped!~
The answer is 5 because a^2 + b^2 = c^2
Answer:
If A is wrong then B I think
Step-by-step explanation:
The location of the y value of R' after using the translation rule is -10
<h3>What will be the location of the y value of R' after using the translation rule? </h3>
The translation rule is given as:
(x + 4, y - 7)
The pre-image of R is located at (-17, -3)
Rewrite as
R = (-17, -3)
When the translation rule is applied, we have:
R' = (-17 + 4, -3 - 7)
Evaluate
R' = (-13, -10)
Remove the x coordinate
R'y = -10
Hence, the location of the y value of R' after using the translation rule is -10
Read more about translation at:
brainly.com/question/26238840
#SPJ1