1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
3 years ago
6

Write a real-world application problem such that the equation to be formed to solve the problem is

Mathematics
1 answer:
Ne4ueva [31]3 years ago
8 0

Answer:

X=25

Step-by-step explanation:

Remove parentheses

7x - 5x - 40= 10

Merge the similar terms

2x - 40= 10

Constantly move to the right side and change characters

2x = 10 + 40

Addition

2x = 50

Divide both sides of the equation by 2

x = 25

You might be interested in
Mrs martin has 80 boxes of paper clips there are 10 paper clip in each box. How many paper clip does she have ?
Bezzdna [24]
80*10=800
answer is 800 clips
5 0
4 years ago
Read 2 more answers
Someone please tell me what this is, the question is what is the slope of this line ?
AnnyKZ [126]

Answer:2/3

Step-by-step explanation:

rise/run. y=2 x=3

7 0
3 years ago
Read 2 more answers
How to do the inverse of a 3x3 matrix gaussian elimination.
nata0808 [166]

As an example, let's invert the matrix

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}

We construct the augmented matrix,

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

On this augmented matrix, we perform row operations in such a way as to transform the matrix on the left side into the identity matrix, and the matrix on the right will be the inverse that we want to find.

Now we can carry out Gaussian elimination.

• Eliminate the column 1 entry in row 2.

Combine 2 times row 1 with 3 times row 2 :

2 (-3, 2, 1, 1, 0, 0) + 3 (2, 1, 1, 0, 1, 0)

= (-6, 4, 2, 2, 0, 0) + (6, 3, 3, 0, 3, 0)

= (0, 7, 5, 2, 3, 0)

which changes the augmented matrix to

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right]

• Eliminate the column 1 entry in row 3.

Using the new aug. matrix, combine row 1 and 3 times row 3 :

(-3, 2, 1, 1, 0, 0) + 3 (1, 1, 1, 0, 0, 1)

= (-3, 2, 1, 1, 0, 0) + (3, 3, 3, 0, 0, 3)

= (0, 5, 4, 1, 0, 3)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 5 & 4 & 1 & 0 & 3 \end{array} \right]

• Eliminate the column 2 entry in row 3.

Combine -5 times row 2 and 7 times row 3 :

-5 (0, 7, 5, 2, 3, 0) + 7 (0, 5, 4, 1, 0, 3)

= (0, -35, -25, -10, -15, 0) + (0, 35, 28, 7, 0, 21)

= (0, 0, 3, -3, -15, 21)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 3 & -3 & -15 & 21 \end{array} \right]

• Multiply row 3 by 1/3 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 5 & 2 & 3 & 0 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 3 entry in row 2.

Combine row 2 and -5 times row 3 :

(0, 7, 5, 2, 3, 0) - 5 (0, 0, 1, -1, -5, 7)

= (0, 7, 5, 2, 3, 0) + (0, 0, -5, 5, 25, -35)

= (0, 7, 0, 7, 28, -35)

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 7 & 0 & 7 & 28 & -35 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 2 by 1/7 :

\left[ \begin{array}{ccc|ccc} -3 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Eliminate the column 2 and 3 entries in row 1.

Combine row 1, -2 times row 2, and -1 times row 3 :

(-3, 2, 1, 1, 0, 0) - 2 (0, 1, 0, 1, 4, -5) - (0, 0, 1, -1, -5, 7)

= (-3, 2, 1, 1, 0, 0) + (0, -2, 0, -2, -8, 10) + (0, 0, -1, 1, 5, -7)

= (-3, 0, 0, 0, -3, 3)

\left[ \begin{array}{ccc|ccc} -3 & 0 & 0 & 0 & -3 & 3 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

• Multiply row 1 by -1/3 :

\left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 7 \end{array} \right]

So, the inverse of our matrix is

\begin{bmatrix}-3&2&1\\2&1&1\\1&1&1\end{bmatrix}^{-1} = \begin{bmatrix}0&1&-1\\1&4&-5\\-1&-5&7\end{bmatrix}

6 0
2 years ago
Hhiycycucucicuvuvuvu​
suter [353]

Answer:

isjsuzizwjskzkzuziziss

6 0
3 years ago
Read 2 more answers
You toss a coin and randomly select a number from 0 to 9 what is the probability of getting tails and selecting 3? 0.25 0.95 0 0
andre [41]
The correct answer is .05

To solve, find the decimal of each of the probabilities: 

Flipping Tails:  1/2 ----> .5

Picking 3:   1/10-----> .10

Now, multiply them together: 

.5 x .10 = .05

Hope this helps!
3 0
4 years ago
Read 2 more answers
Other questions:
  • What is the square root of 79
    12·2 answers
  • A thief steals an ATM card and must randomly guess the correct seven​-digit pin code from a 4​-key keypad. Repetition of digits
    15·1 answer
  • Does the system have one solution, no solution, or infinitely many? Use your substitution to justify your answer
    8·1 answer
  • Which is the graph of 3x – 2y = 6? A coordinate plane with a line passing through (negative 2, 0) and (0, 3). A coordinate plane
    15·2 answers
  • Three boxes of baseball cards weigh 99 pounds how many pounds do 4 boxes weigh
    14·2 answers
  • How many dimes are in $1000? A) 100 B) 1,000 C) 10,000 D) 100,000 E) 1,000,000
    14·2 answers
  • What is the value of y? Enter your answer in the box.
    14·2 answers
  • Select the values that make the inequality 4q≥−68 true. Then write an equivalent inequality, in terms of q. (Numbers written in
    10·1 answer
  • A bake sale has 3 cakes for sale. Each cake was cut into 4 slices. Each slice was sold for $9. What was the total amount earned
    10·1 answer
  • Find volume of this figure
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!