Answer:
y=2x+3
Step-by-step explanation:
The coefficient has to be 2, since the graph has a slope of 2, and the constant has to be 3 because the y- intercept is 3.
y=2x+3
Answer 5!
Explanation;;
your dividing 15 among 3 people. Since 3 x 5 is 15, then when you divide you should get 5. 5 + 5 + 5 is 15!
please bark brainlist!
<h3>
Answer: Choice C. 4*sqrt(6)</h3>
====================================================
Explanation:
Each cube has a side length of 4. Placed together like this, the total horizontal side combines to 4+8 = 8. This is the segment HP as shown in the diagram below. I've also added point Q to form triangle HPQ. This is a right triangle so we can find the hypotenuse QH
Use the pythagorean theorem to find QH
a^2 + b^2 = c^2
(HP)^2 + (PQ)^2 = (QH)^2
8^2 + 4^2 = (QH)^2
(QH)^2 = 64 + 16
(QH)^2 = 80
QH = sqrt(80)
Now we use segment QH to find the length of segment EH. Focus on triangle HQE, which is also a right triangle (right angle at point Q). Use the pythagorean theorem again
a^2 + b^2 = c^2
(QH)^2 + (QE)^2 = (EH)^2
(EH)^2 = (QH)^2 + (QE)^2
(EH)^2 = (sqrt(80))^2 + (4)^2
(EH)^2 = 80 + 16
(EH)^2 = 96
EH = sqrt(96)
EH = sqrt(16*6)
EH = sqrt(16)*sqrt(6)
EH = 4*sqrt(6), showing the answer is choice C
-------------------------
A shortcut is to use the space diagonal formula. As the name suggests, a space diagonal is one that goes through the solid space (rather than stay entirely on a single face; which you could possibly refer to as a planar diagonal or face diagonal).
The space diagonal formula is
d = sqrt(a^2+b^2+c^2)
which is effectively the 3D version of the pythagorean theorem, or a variant of such.
We have a = HP = 8, b = PQ = 4, and c = QE = 4 which leads to...
d = sqrt(a^2+b^2+c^2)
d = sqrt(8^2+4^2+4^2)
d = sqrt(96)
d = sqrt(16*6)
d = sqrt(16)*sqrt(6)
d = 4*sqrt(6), we get the same answer as before
The space diagonal formula being "pythagorean" in nature isn't a coincidence. Repeated uses of the pythagorean theorem is exactly why this is.
Answer & Step-by-step explanation:
1) 4x
2) y-8
3) 6/x
4) 12-y
5) y+9
6) 5^2
7) x^4
8) 9+n
9) 64-y
10) 12/n
11) x^2/7
12) x-8=22
13) 2a-b^2
14) 12-ab