Answer:
The kilogram (kg) is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015 ×10−34 when expressed in the unit J s, which is equal to kg m2 s−1, where the meter and the second are defined in terms of c and ∆νCs.
Answer:
Following are the responses to this question:
Explanation:
The small current passes thru the capacitor of the strain gauge and the current is generated throughout the resistor. For the very first time, in contrast to what we calculate, its resistance of the multimeter is quite high and therefore the small stream flowing through the bulb would have very little impact on the measure. Thus, as the current flows through the flashbulb, this same calculation is of excellent price, its material is heated and resistance varies with increase. Therefore, when the bulb will be on, sensitivity is greater.
Answer:
0.0334N
Explanation:
Given parameters:
M1 = 5 x 10⁶kg
M2 = 1 x 10⁶kg
Distance = 100m
Unknown:
Gravitational force = ?
Solution:
To solve this problem, we use the Newton's law of universal gravitation.
Fg =
G is the universal gravitation constant
m is the mass
r is the distance
Fg =
= 0.0334N
Answer:
The cloud moves 9050 meters to the east in 12.5 minutes.
Explanation:
Let suppose that mass of the cloud is negligible. meaning that effects of gravity are negligible and that altitude of the cloud remains constant. If the cloud drifts at constant velocity, travelled distance is defined by following formula:
(1)
Where:
- Velocity, in meters per second.
- Time, in seconds.
If we know that
and
, then the travelled distance after 12.5 minutes is:

The cloud moves 9050 meters to the east in 12.5 minutes.