See
K.E=1/2(mass*velocity²)
so option B is the correct answer.
Brainliest pls :-)
Answer:
a) 
b) 
c) 
Explanation:
Given masses:


Velocity of mass 1, 
Velocity of mass 2, 
a)
Initial momentum:



b)
magnitude of initial momentum:


From the conservation of momentum:



is the magnitude of final velocity.
Direction of final velocity will be in the direction of momentum:




c)
Vertical component of final velocity:


Answer:
Cam Newton (currently but might change because he has been allowed to trade)
Will Grier
Kyle Allen
Explanation:
Answer:
The SI unit of time is second (s) and temperature is Kelvin (K)
Explanation:
hope it is helpful to you
The first thing you should do for this case is to find the horizontal and vertical components of the forces acting on the body.
We have then:
Horizontal = 9-9.2cos (58) = 4.124742769 N.
Vertical = 9.2sin (58) = 7.802042485 N
Then, the resulting net force is:
F = √ ((4.124742769) ^ 2 + (7.802042485) ^ 2) = 8.825268826 N
Then by definition:
F = m * a
Clearing the acceleration:
a = F / m
a = (8.825268826) / (3.0) = 2.941756275 m / s ^ 2
answer:
The magnitude of the body's acceleration is
2.941756275 m / s ^ 2