1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
13

Which of the following statements is true for a cell placed in beaker containing an isotonic solution?

Physics
1 answer:
Korvikt [17]3 years ago
3 0
An isotonic solution is <span>a solution in which concentration or solute is equal to that of a cell placed in it. Thus, the system is in dynamic equilibrium, and so water molecules flow in both directions.
The correct answer is <u>C. w</u></span><span><u>ater molecules flow in both directions at the same rate.</u></span>
You might be interested in
A uniform electric field of magnitude 110 kV/m is directed upward in a region of space. A uniform magnetic field of magnitude 0.
Marizza181 [45]

Answer:

1.7×10^5 ms-1

Explanation:

From

qE= qvB

q= charge on the electron

E = electric field

v= velocity

B= magnetic field

E= vB

v= E/B= 110×10^3/0.6

v= 1.7×10^5 ms-1

3 0
3 years ago
Read 2 more answers
Asteroid Ida was photographed by the Galileo spacecraft in 1993, and the photograph revealed that the asteroid has a small moon,
Nady [450]

Answer:

The orbital speed of Dactyl is 5.55m/s

Explanation:

The orbital speed can be determined by the combination of the universal law of gravity and Newton's second law:

F = G\frac{M \cdot m}{r^{2}}  (1)

Where G is gravitational constant, M is the mass of the asteroid, m is the mass of the moon and r is the distance between them

In the other hand, Newton's second law can be defined as:

F = ma  (2)

Where m is the mass and a is the acceleration

Then, equation 2 can be replaced in equation 1

m\cdot a  = G\frac{M \cdot m}{r^{2}}  (2)

However, a will be the centripetal acceleration since the moon Dactyl describe a circular motion around the asteroid

a = \frac{v^{2}}{r}  (3)

m\frac{v^{2}}{r} = G\frac{M \cdot m}{r^{2}} (4)

Therefore, v can be isolated from equation 4:

m \cdot v^{2} = G \frac{M \cdot m}{r^{2}}r

m \cdot v^{2} = G \frac{M \cdot m}{r}

v^{2} = G \frac{M \cdot m}{rm}

v^{2} = G \frac{M}{r}

v = \sqrt{\frac{G M}{r}} (5)

Finally, the orbital speed can be found from equation 5:

Notice, that it is necessary to express r in units of meters.

r = 95km \cdot \frac{1000m}{1km} ⇒ 95000m

v = \sqrt{\frac{(6.672x10^{-11}N.m^{2}/kg^{2})(4.4x10^{16}kg)}{95000m}}

v = 5.55m/s

Hence, the orbital speed of Dactyl is 5.55m/s

3 0
3 years ago
In a mall, a shopper rides up an escalator between floors. At the top of the escalator, the shopper turns right and walks 6.40 m
Elden [556K]

Answer:

25 degrees above the horizontal.

5 0
3 years ago
You are creating waves in a rope by shaking your hand back and forth. Without changing the distance your hand moves, you begin t
scoundrel [369]

Answer:

<u>Amplitude - remains the same</u>

<u>Frequency - increases</u>

<u>Period - decreases</u>

<u>Velocity - remains the same.</u>

<u />

Explanation:

The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.

The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.

The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.

The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.

7 0
3 years ago
By what factor would your weight be multiplied if the earth were1/2 as massavise and the diameter was unchanged
Nutka1998 [239]
<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then: 

F = G(Mm / (4(pi)*r^2)) 

The above expression gives the force that you feel on the earth's surface, as it is today! 

Let us now double the mass of the earth and decrease its diameter to half its original size. 

This is the same as replacing M with 2M and r with r/2. 

Now the gravitational force (F' ) on the new earth's surface is given by: 

F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F 

So: 

F' = 8F 

This implies that the force that you would feel pulling you down (your weight) would increase by 800%! 

You would be 8 times heavier on this "new" earth!</span>
4 0
3 years ago
Other questions:
  • (15 POINTS)Which best describes the electric field created by a positive charge?
    10·2 answers
  • A circuit contains a 6.0-v battery, a 4.0-w resistor, a 0.60-µf capacitor, an ammeter, and a switch all in series. what will be
    6·2 answers
  • How did Marie Curie’s research in radioactivity benefit others while harming her
    5·1 answer
  • I will mark brainliest Thanks M8
    7·2 answers
  • Sal connected four light bulbs in a parallel circuit. If Sal adds another light bulb, what is true about the current in each bul
    11·2 answers
  • What is the Ring of Fire?
    5·2 answers
  • Which of the following situations describes static friction? a. A heavy crate standing on a rough patch of mud and is being push
    14·2 answers
  • A yo-yo is twirled on a 4 meter long string so that its tangential
    9·1 answer
  • A bowler throws a ball down the lane toward the pins. The ball reaches the pins and slowly moves through them, knocking down the
    9·1 answer
  • Why food cook faster with salt water than cook with pure water​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!